First-order semantics

FL-structure (or L-interpretation) U

(1) A non-empty class U, called the| universe of discourse|(or, briefly,
universe, or domain) of 1. The members of U are called|individuals| (of ).

(2) A mapping which assigns to each function symbol f of # an
operation f¥ on U such that if f is an n-ary function symbol, f¥is an n-ary
operation on U. In particular, if a is a constant, then a¥ is an individual.
An individual of this kind — i.e., a¥ for some constant a of ¥ — is said
to be designated.

(3) A mapping which assigns to each extralogical predicate symbol
P of % a relation P¥ on U such that if P is an n-ary predcate symbol,
PY is an n-ary relation on U. In particular, if P is unary, then P" is a
subclass of U.




We therefore define an #-valuation o to be an Z-structure U together
with an assignment of a value x°¢€ U to each variable x.

o: VAR =U

By definition, each valuation o involves a particular structure . We
refer to U as the structure underlying . If U is the structure underlying o,
we define £ and P? to be the operation f¥ and the relation PY, respectively,
where f is any function symbol and P is any extralogical predicate symbol.
The universe U of M will also be called the universe of o.

We shall say that two valuations ¢ and 7 agree on a given variable x
(or function symbol f, or extralogical predicate symbol P) if ¢ and 7 have
the same universe and x°=x" (or f°=f", or P°=P", respectively).




Let o be a valuation with universe U and let u€ U. We define o(x/u)

o(y) if s#x
O'(X/M)(S):%

uif s=x




Given an Z-valuation o with universe U, we now define, for each

ZL-term t, the value of t under o |(briefly, t°) in such a way that t°¢ U.

Also for each [#-formula a we define the value of & under o (briefly, a%)
so that «” is either T or L. This is done by recursion on degt and dega

(T1). If x is a variable, then x? is already defined.
(T2). If f is an n-ary function symbol of £ and t,,...,t, are #-terms, then

(ft,...t,)° =£(t7,....t0).




(F1). If P is an n-ary extralogical predicate symbol of % and t,,...,t,
are Z-terms, then

s [T if (tf,....t2ePr,
(P;...t,) _{_L otherwise.
(F17). If s and t are #-terms and % is a language with equality, then
s [T if s7=t°,
(s=1 —{_L otherwise.
(F2). For every Z-formula B,
[T if B’=1,
(71B) _{_1_ otherwise.

(F3). For every #-formula p and #-formula v,

T if B°=1L or y°=T,
1 otherwise.

B->={

(F4). For every #-formula f and variable x,

T if B°*™=7 forevery ucU,
1 otherwise,

(vxp =]

where U is the universe of o. The above definition will be referred to as “BSD’’. It must be stressed

that what the BSD defines is not the valuation ¢ itself — which must be
given in advance, by specifying a structure U and an assignment of value
x?¢ U to each variable x — but two mappings induced by o.
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1.2. REMARK. Because of clause (F4), the BSD is strongly non-constructive:
if U is infinite, (F4) does not provide us with a method for computing
the value (\Yxp)? in a finite number of steps, for it presupposes the values
B°™*/® for infinitely many u. This non-constructive character is inherited
by all the semantic definitions given below, which are based on the BSD.
Indeed, one of our main tasks will be to obtain a more constructive charac-
terization of the concepts thus defined.




1.3. ProBLEM. Using Def. 1.5.1(g) show that (Jxa)’= T iff a’™* =T
for some u€ U, where U is the universe of the valuation o.

1.4. PrROBLEM. Show that 3 could have been taken as primitive (i.e., as
a symbol of &) instead of Y. (Replace BSD (F4) by the statement of
Prob. 1.3 and replace Def. 1.5.1(g) by a definition of ¥ from which the
original (F4) can be derived.)




We have noted above that, for every valuation o, the induced mapping

defined 1n

say that o
(or o=,

clauses (F1)-(F4) of the BSD is a truth valuation. We shall

satisfies|a formula ¢ (or a set @ of formulas) — briefly, o= ¢

respectively) — if the truth valuation induced by o satisfies

¢ (or @, respectively). Thus|c=¢@ iff @°=T|; and c=® iff ¢°=T for
every @€ ®.

1.5. DerFINITION. If every valuation satisfying a set ® of formulas also
satisfies a formula o, we say that a is a [logical consequence of ®|(or a
follows logically from ®, or ® logically entails @). We write this briefly

as [‘D=a”| As usual, we shall write “@k=a” instead of “{@}=a” and

say that a is a logical consequence of ¢@. If a is satisfied by every valuation

(i.e., if &
that a 1s

follows logically from the empty set of formulas), then we say

logically true (or logically valid) and we write “=a”. If a=p

as well as B=a (i.e., a’=p° for every valuation ), we say that a and B

are|logically equivalent.l| We say that a formula @ (or a set ® of formulas)
is |§atisﬁable if at:(_d (or =D, respecstively) for some valuation o.




1.7. PROBLEM. Show that ®, a=f iff ®=a—->f. Hence show that
{01,...,0,} =B iff =@, ... ¢, B. Also show that @ and B are logically
equivalent iff oo f.

check validity
a—> o,
(a=>B=>y)=>(a=>p)—>a—>y,
(Mra—=>p)—> (1o 1) >0,
(@=>PpAB->7)>a—>7,
(@a=>P)A(a=>y)>a—>BAY,
(@=>7)A(B>7)>avi->y,
o= (BVY)]=>(a—>P)V(e—>7).




check equivalence

(@) a=>p, 1p—> a;

(b) T1(a—>P), aA1B;

©) T1(@1AQ:A...AQ), T10;VTIQ,V...VTIQ,;
(d) @V PV...VQ), TI0;ATIOA ... ATIQ,;
() aABAY, (@AB)AY;

) avpvy, (avp)vy;

(8) Q1AQA...AQ, U, Q1= Q3= ...—> @, >0




Freedom and bondage

2.1. THEOREM. Let t be a term, and let ¢ and © be valuations which agree
on all variables and function symbols occurring in t. Then t°=t".

PrOOF. By straightforward induction on degt. If t = x then, since x
is a variable occurring in t, we must have x’=x°, i.e., t’=t".

If t=ft,...t,, where f is an n-ary function symbol and t,,...,t, are terms,
then by assumption f and f° are the same. Also, since every variable
or function symbol occurring in one of the arguments t,,...,t, occurs
also in t, we have by the induction hypothesis

t7 =t;,...t7=t".

Thus
t°=(ft,...t)°
=f(t;,...,t7) (by BSD (T2))
=f*(t,...,t) (by ind. hyp.)
=(ft;...t,)" (by BSD (T2))

—t°. |




We say that a term t is closed if it does not contain any variable.

a given occurrence of X in a is bound if this occurrence is within a subformula of @ having the form Wx§ (i.e., a universal
subformula of & which has x as variable of quantification); all other occurrences of X in & are free.

2.2. DEFINITION. A given occurrence of a variable x in a formula a is
free in a« iff it is not bound in a. Moreover:

(1) If &« is atomic, then every occurrence of x in a is free in a.

(2) If a="1P, then a given occurrence of x in & 1s free in o iff the same
occurrence is free in f.

(3) If a=p—>1v, then a given occurrence of x in a is free in a iff that
occurrence is a free occurrence of x in f or in y.

(4) If a=VYxP, then every occurrence of x in & is bound in a, but if
o.=VYyp, where y is a variable other than x, then a given occurrence of
X in & 1s free 1n a iff that occurrence is free in B.




Note that the same variable may have both free and bound occurrences
in the same formula. For example, in the formula

VX [x=yAJy(y=x)] - Jz(x7#2z),

1]

bound free

definire induttivamente
FV(X)




We say that x is free in a if x has at least one free occurrence in .

The free variables of & are the variables which are free in a.

dare definizione induttiva dell'insieme di variabili
libere in una formula




2.3. THEOREM. Let o and t be valuations which have the same universe
U and which agree on every free variable of a as well as on every extra-
logical symbol occurring in o.. Then o’ =a.

PrROOF. By induction on dega. We deal here only with the case where
a i1s universal, leaving the other (and easier) cases to the reader.

Let a=Yxp. Then, by the BSD, a°= T iff ™ =T for every u in the
universe U of 6. Now, the extralogical symbols of B are exactly those
of a. Also, the free variables of § are either exactly those of a, or they
are those plus x. But (for every u€ U) o(x/u) and 7(x/u) clearly agree

not only on the free variables and extralogical symbols of a., but also on x.
Since deg p<dega, it follows from the induction hypothesis that pe*/* =

=B >, Thusa’=T iff p** =7 for all u€ U, i.e., iff a*=T. |

2.4. PROBLEM. Show that if x is not free in a, then o, Yxa and Jxa are
logically equivalent.
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A formula which has no free variables (so that all occurrences of variables
in it, if any, are bound) is called a|sentence.| It follows from Thm. 2.3
that|if o is a sentence then the value a’ depends only on the structure U

underlying o. In this case we define o to be that value (i.e., a" =a° for
any valuation ¢ which U underlies).

If a¥= T, we say that the structure [Ml satisfies the sentence o (or & /1olds

in U, or U is|a model|for a), briefly, U=a. If U= @ for every ¢ in a set
@ of sentences, we say that W is|a model|for ®@.

More generally, let & be a formula such that all the free variables of
o are among the first k variables of .#, namely v,,...,v,. Then, by Thm 2.3,
a’ depends only on the structure 2l underlying o and on v] for i=1,... k.
We write

Ue=afu,...u]
when we wish to assert that o= a for some (hence for every) valuation
o such that W underlies o and such that v{=u; for i=1,.../k.
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2.5. ProBLEM. Construct a sentence a containing only logical symbols
(i.e., no function symbol and no predicate symbol other than =) such
that a holds in a structure i iff U has

(a) at least three members,

(b) at most three members,

(c) exactly three members.
2.6. ProBLEM. Using just one binary predicate symbol (but no other
predicate symbols and no function symbols) construct a sentence a such
that o« has no finite model (i.e., no model with finite universe); but if U
is any infinite set then & has a model whose universe is U.

2.7. REMARK. From Thm. 2.3 it follows that the various semantic concepts
defined in Def. 1.5 are invariant with respect to language. For, if % and
&’ are two first-order languages and o is an Z-valuation then there is
an %’-valuation ¢’ which agrees with ¢ on the symbols which .# and %’
have in common. Any formula & belonging to both . and £’ will then
get the same value under ¢ and ¢’. Thus, e.g., if a is satisfiable as an
Z-formula (i.e., satisfied by some #-valuation) it is also satisfiable as
an %’-formula.
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Substitution

Let s and t be terms. We define s(x/t) as the term obtained from s when
an occurrence of t is substituted for each occurrence of x in s. In detail,
s(x/t) is defined by recursion on degs as follows:

3.1. DepnNITION. If s=x then s(x/t)=t; but if s=y, where y is a variable
other than x, then s(x/t)=y. If s=fs,...s,, where f is an #n-ary function
symbol and s,,...,s, are terms, then s(x/t)=fs;(x/t)...s,(x/t).

3.2. THEOREM. If s and t are terms,-xX a variable and ¢ a valuation, then
s(x/t)° =s"*),

where t=t°.




formulas

We shall first define a(x/t) only in those cases where the substitution
of t for x in o does not lead to “capture’’ and thus does not require any
change of the variable of quantification. Later we shall also define a(x/t)
in the remaining cases, by prescribing the changes that must be made in
o before the substitution may take place.

We shall say that t is Lfree to be substituted for x in a|(briefly, free for
x in o) if no free occurrence of x in a is within a subformula of a having

the form YyP, where y occurs in t.

If t is free for x in &, we shall define a(x/t) as the-result of substituting
an occurrence of t for each free occurrence of x in a. (Note that because
t is assumed to be free for x in a, all occurrences of variables that have
been introduced via the substitution are free in a(x/t).)




3.3. DerFINITION. If & is an atomic formula Ps,...s,, then t is free for x
in o. And a(x/t) is defined as Ps,(x/t)...s,(x/t). (Here, for n=2, P may
also be the logical predicate symbol =.)

If a="=1B, then t is fiee for x ina ift t 1s free for x in B; if this is the case,
a(x/t) is defined to be —1[B(x/t)].

If =p—>1v, then t is free for x in a iff tis free for x in both P and v;
if this is the case we define a(x/t) as P(x/t)—> y(x/t).

If a=VyP, then t is free for x in a iff one of the following conditions
holds:

(a) x is not free in a,

(b) x is free in a (hence, in particular, x>#y), and t is free for x in B,
and y does not occur in t.

In case (a) we define a(x/t) to be a. In case (b) we define a(x/t) to be

Vy [B(x/D)].

It is easy to verify that if no variable occurring in t has a bound occurrence
in o, then t is free for x in a. Also, x is always free for itself in a, and
a(x/x)=a.
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3.4. THEOREM. If t is free for X in o then, for every valuation o,
a(x/t)" =a® /),

where t=t°.
PrOOF. By induction on dega. We distinguish various cases, correspond-
ing to the cases in Def. 3.2. Here we only deal with the case a=VyS§,
leaving the other (easier) cases to the reader.
First suppose that x is not free in @. Then a(x/t)=a. Also, by Thm. 2.3,
a’=a’*M, Thus
a(x/t)° =a’ =a’ /1,

Now suppose that x is free in a and t is free for x in f and y does not
occur in t. Then we have

D) a(x/t)’ =(Vy [B(x/)])°.
By the BSD,
@) (Vy B&x/®))°’=T iff Bx/)™=T forall ucU,

where U is the universe of ¢. Since deg p<dega, the induction hypothesis
yields

3) B(x /t)a(y/ u) Ba(y/u)(XIt'),

where ¢’ =t°®/, But y does not occur in t. Hence by Thm. 2.1

M G
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Also, x and y are different (otherwise x could not be free in a); hence

a(y/u)(x/t)=o(x/t)(y/u).

For, it makes no difference whether we first change the value of x from
x° to t and then change the value of y to u, or vice versa. (It would make
a difference if x were the same as y!) Hence we can rewrite (3) as

(4) B(x /t)a(Y/u) — ﬁa(x/t)(y/u) .
Now, by the BSD,

BexOI — 1 for all uc U iff [Yyp]I°*?=T.

Combining this with (1), (2) and (4) we get the required result. [
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3.5. DEerINITION. If z 1s a variable which 1s not free in B but is free for
x in B, we say that Yz [B(x/z)] arises from WxP by (correct) alphabetic
change. (Note that if z does not occur at all in B, then z certainly satisfies
both of the above conditions.)

3.6. THEOREM. If Yz [B(x/z)] arises from \YxP by alphabetic change, then
these two formulas are logically equivalent.

Consider a given formula a. Suppose o has a universal subformula,
say VyP. Let us replace one occurrence of Yyp in o by an occurrence
of a formula Vz[B(y/z)] arising from VWyp by alphabetic change (i.e.,
z is not free in P, but is free for y in ). We shall say that o is a variant
of a (briefly, a~a’) if & can be transformed into a” by a finite number of
applications of steps like the one just described. (We include the case
where the number of such steps is 0, so that a~a.)
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3.7. DerINITION. If a 1s atomic, then a 1s its own sole variant.

If o= 1B, then the variants of a are all formulas of the form —1(p"),
where B’ 1s a variant of f.

If a=83—>7v, then the variants of a are all formulas of the form p'—=> v,
where B’ and y” are variants of § and y respectively.

If a=VYyp, then the variants of a are all formulas \Yyf’, where B’ is
a variant of B, as well as all formulas ¥z [B'(y/z)] obtained from such
Vyp by alphabetic change.

(i) Equivalence of formulas: in fact what we call a formula is indeed an
equivalence class: we identify two formulas which differ only by the names
of their bound variables, precisely: 4 ~ 4; if 4 ~ A" and B ~ B’, then
A~ 1A, AANB~AAB,AvVB~AVvB,A—->B~A - B .IfA[x,]and
A'[x,] are formulas, let x,be a variable occurring neither in 4 nor in 4’; then, if
Alx,] ~ A'[x,] we have Vx, A4 [x,] ~Vx,A4 [x,] and Ix, 4 [x,] ~ Ix, 4 [x,].
An immediate consequence of the definition is that, given C, it is possible
to find D such that C~ D and

— no variable in D is both free and bound

— any bound variable in D occurs in the scope of only one occurrence
of a quantifier.
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