First-order semantics

\mathcal{L} -structure (or \mathcal{L} -interpretation) \mathfrak{U}

(1) A non-empty class U, called the *universe of discourse* (or, briefly, *universe*, or *domain*) of \mathfrak{U} . The members of U are called *individuals* (of \mathfrak{U}). (2) A mapping which assigns to each function symbol \mathbf{f} of \mathscr{L} an operation $\mathbf{f}^{\mathfrak{u}}$ on U such that if \mathbf{f} is an *n*-ary function symbol, $\mathbf{f}^{\mathfrak{u}}$ is an *n*-ary operation on U. In particular, if \mathbf{a} is a constant, then $\mathbf{a}^{\mathfrak{u}}$ is an individual. An individual of this kind — i.e., $\mathbf{a}^{\mathfrak{u}}$ for some constant \mathbf{a} of \mathscr{L} — is said to be *designated*.

(3) A mapping which assigns to each extralogical predicate symbol **P** of \mathcal{L} a relation \mathbf{P}^{u} on U such that if **P** is an *n*-ary predcate symbol, \mathbf{P}^{u} is an *n*-ary relation on U. In particular, if **P** is unary, then \mathbf{P}^{u} is a subclass of U.

We therefore define an \mathscr{L} -valuation σ to be an \mathscr{L} -structure \mathfrak{U} together with an assignment of a value $\mathbf{x}^{\sigma} \in U$ to each variable \mathbf{x} .

$\sigma: VAR \rightarrow U$

By definition, each valuation σ involves a particular structure \mathfrak{U} . We refer to \mathfrak{U} as the structure *underlying* σ . If \mathfrak{U} is the structure underlying σ , we define \mathbf{f}^{σ} and \mathbf{P}^{σ} to be the operation $\mathbf{f}^{\mathfrak{U}}$ and the relation $\mathbf{P}^{\mathfrak{U}}$, respectively, where \mathbf{f} is any function symbol and \mathbf{P} is any extralogical predicate symbol. The universe U of \mathfrak{U} will also be called the *universe of* σ .

We shall say that two valuations σ and τ agree on a given variable x (or function symbol f, or extralogical predicate symbol P) if σ and τ have the same universe and $\mathbf{x}^{\sigma} = \mathbf{x}^{\tau}$ (or $\mathbf{f}^{\sigma} = \mathbf{f}^{\tau}$, or $\mathbf{P}^{\sigma} = \mathbf{P}^{\tau}$, respectively). Let σ be a valuation with universe U and let $u \in U$. We define $\sigma(\mathbf{x}/u)$

$$\sigma(x/u)(s) = \begin{cases} \sigma(y) \text{ if } s \neq x \\ u \text{ if } s = x \end{cases}$$

Given an \mathscr{L} -valuation σ with universe U, we now define, for each \mathscr{L} -term **t**, the value of **t** under σ (briefly, \mathbf{t}^{σ}) in such a way that $\mathbf{t}^{\sigma} \in U$.

Also for each \mathscr{L} -formula α we define the value of α under σ (briefly, α^{σ}) so that α^{σ} is either \top or \bot . This is done by recursion on deg t and deg α

(T1). If x is a variable, then x^{σ} is already defined. (T2). If f is an *n*-ary function symbol of \mathscr{L} and t_1, \ldots, t_n are \mathscr{L} -terms, then

 $(\mathbf{ft}_1...\mathbf{t}_n)^{\sigma} = \mathbf{f}^{\sigma}(\mathbf{t}_1^{\sigma},\ldots,\mathbf{t}_n^{\sigma}).$

(F1). If **P** is an *n*-ary extralogical predicate symbol of \mathscr{L} and $\mathbf{t}_1, \ldots, \mathbf{t}_n$ are \mathscr{L} -terms, then

$$(\mathbf{Pt}_1...\mathbf{t}_n)^{\sigma} = \begin{cases} \top & \text{if } \langle \mathbf{t}_1^{\sigma},...,\mathbf{t}_n^{\sigma} \rangle \in \mathbf{P}^{\sigma}, \\ \bot & \text{otherwise.} \end{cases}$$

(F1⁼). If s and t are \mathscr{L} -terms and \mathscr{L} is a language with equality, then

$$(\mathbf{s=t})^{\sigma} = \begin{cases} \top & \text{if } \mathbf{s}^{\sigma} = \mathbf{t}^{\sigma}, \\ \bot & \text{otherwise.} \end{cases}$$

(F2). For every \mathcal{L} -formula β ,

$$(\neg \beta)^{\sigma} = \begin{cases} \top & \text{if } \beta^{\sigma} = \bot, \\ \bot & \text{otherwise.} \end{cases}$$

(F3). For every \mathscr{L} -formula β and \mathscr{L} -formula γ ,

$$(\boldsymbol{\beta} \rightarrow \boldsymbol{\gamma})^{\sigma} = \begin{cases} \top & \text{if } \boldsymbol{\beta}^{\sigma} = \bot & \text{or } \boldsymbol{\gamma}^{\sigma} = \top, \\ \bot & \text{otherwise.} \end{cases}$$

(F4). For every \mathcal{L} -formula β and variable x,

$$(\forall \mathbf{x}\boldsymbol{\beta})^{\sigma} = \begin{cases} \top & \text{if } \boldsymbol{\beta}^{\sigma(\mathbf{x}/u)} = \top & \text{for every } u \in U, \\ \bot & \text{otherwise,} \end{cases}$$

where U is the universe of σ .

The above definition will be referred to as "BSD". It must be stressed that what the BSD defines is not the valuation σ itself — which must be given *in advance*, by specifying a structure \mathfrak{U} and an assignment of value $\mathbf{x}^{\sigma} \in U$ to each variable \mathbf{x} — but two mappings *induced* by σ .

1.2. REMARK. Because of clause (F4), the BSD is strongly non-constructive: if U is infinite, (F4) does not provide us with a method for computing the value $(\forall \mathbf{x} \boldsymbol{\beta})^{\sigma}$ in a finite number of steps, for it presupposes the values $\boldsymbol{\beta}^{\sigma(\mathbf{x}/u)}$ for infinitely many u. This non-constructive character is inherited by all the semantic definitions given below, which are based on the BSD. Indeed, one of our main tasks will be to obtain a more constructive characterization of the concepts thus defined. 1.3. PROBLEM. Using Def. 1.5.1(g) show that $(\exists \mathbf{x}\alpha)^{\sigma} = \top$ iff $\alpha^{\sigma(\mathbf{x}/u)} = \top$ for some $u \in U$, where U is the universe of the valuation σ .

1.4. PROBLEM. Show that \exists could have been taken as primitive (i.e., as a symbol of \mathscr{L}) instead of \forall . (Replace BSD (F4) by the statement of Prob. 1.3 and replace Def. 1.5.1(g) by a definition of \forall from which the original (F4) can be derived.)

We have noted above that, for every valuation σ , the induced mapping defined in clauses (F1)-(F4) of the BSD is a truth valuation. We shall say that σ satisfies a formula φ (or a set Φ of formulas) — briefly, $\sigma \models \varphi$ (or $\sigma \models \Phi$, respectively) — if the truth valuation induced by σ satisfies φ (or Φ , respectively). Thus $\sigma \models \varphi$ iff $\varphi^{\sigma} = \top$; and $\sigma \models \Phi$ iff $\varphi^{\sigma} = \top$ for every $\varphi \in \Phi$.

1.5. DEFINITION. If every valuation satisfying a set Φ of formulas also satisfies a formula α , we say that α is a *logical consequence of* Φ (or α *follows logically from* Φ , or Φ *logically entails* α). We write this briefly as $[\Phi \models \alpha]^{n}$. As usual, we shall write " $\phi \models \alpha$ " instead of " $\{\phi\} \models \alpha$ " and say that α is a logical consequence of ϕ . If α is satisfied by *every* valuation (i.e., if α follows logically from the empty set of formulas), then we say that α is *logically true* (or *logically valid*) and we write " $\models \alpha$ ". If $\alpha \models \beta$ as well as $\beta \models \alpha$ (i.e., $\alpha^{\sigma} = \beta^{\sigma}$ for every valuation σ), we say that α and β are *logically equivalent*. We say that a formula ϕ (or a set Φ of formulas) is *satisfiable* if $\sigma \models \phi$ (or $\sigma \models \Phi$, respectively) for some valuation σ . 1.7. PROBLEM. Show that $\Phi, \alpha \models \beta$ iff $\Phi \models \alpha \rightarrow \beta$. Hence show that $\{\varphi_1, ..., \varphi_n\} \models \beta$ iff $\models \varphi_1 \rightarrow ... \rightarrow \varphi_n \rightarrow \beta$. Also show that α and β are logically equivalent iff $\models \alpha \leftrightarrow \beta$.

check validity

$$\alpha \rightarrow \beta \rightarrow \alpha$$
,
 $(\alpha \rightarrow \beta \rightarrow \gamma) \rightarrow (\alpha \rightarrow \beta) \rightarrow \alpha \rightarrow \gamma$,
 $(\neg \alpha \rightarrow \beta) \rightarrow (\neg \alpha \rightarrow \neg \beta) \rightarrow \alpha$,
 $(\alpha \rightarrow \beta) \land (\beta \rightarrow \gamma) \rightarrow \alpha \rightarrow \gamma$,
 $(\alpha \rightarrow \beta) \land (\alpha \rightarrow \gamma) \rightarrow \alpha \rightarrow \beta \land \gamma$,
 $(\alpha \rightarrow \gamma) \land (\beta \rightarrow \gamma) \rightarrow \alpha \lor \beta \rightarrow \gamma$,
 $[\alpha \rightarrow (\beta \lor \gamma)] \rightarrow (\alpha \rightarrow \beta) \lor (\alpha \rightarrow \gamma)$.

(a)
$$\alpha \rightarrow \beta$$
, $\neg \beta \rightarrow \neg \alpha$;
(b) $\neg (\alpha \rightarrow \beta)$, $\alpha \land \neg \beta$;
(c) $\neg (\phi_1 \land \phi_2 \land \dots \land \phi_k)$, $\neg \phi_1 \lor \neg \phi_2 \lor \dots \lor \neg \phi_k$;
(d) $\neg (\phi_1 \lor \phi_2 \lor \dots \lor \phi_k)$, $\neg \phi_1 \land \neg \phi_2 \land \dots \land \neg \phi_k$;
(e) $\alpha \land \beta \land \gamma$, $(\alpha \land \beta) \land \gamma$;
(f) $\alpha \lor \beta \lor \gamma$, $(\alpha \lor \beta) \lor \gamma$;
(g) $\phi_1 \land \phi_2 \land \dots \land \phi_k \rightarrow \alpha$, $\phi_1 \rightarrow \phi_2 \rightarrow \dots \rightarrow \phi_k \rightarrow \alpha$.

Freedom and bondage

2.1. THEOREM. Let **t** be a term, and let σ and τ be valuations which agree on all variables and function symbols occurring in **t**. Then $\mathbf{t}^{\sigma} = \mathbf{t}^{\tau}$.

PROOF. By straightforward induction on deg t. If $\mathbf{t} = \mathbf{x}$ then, since \mathbf{x} is a variable occurring in t, we must have $\mathbf{x}^{\sigma} = \mathbf{x}^{\tau}$, i.e., $\mathbf{t}^{\sigma} = \mathbf{t}^{\tau}$.

If $t=ft_1...t_n$, where f is an *n*-ary function symbol and $t_1,...,t_n$ are terms, then by assumption f^{σ} and f^{τ} are the same. Also, since every variable or function symbol occurring in one of the arguments $t_1,...,t_n$ occurs also in t, we have by the induction hypothesis

$$\mathbf{t}_1^{\sigma} = \mathbf{t}_1^{\tau}, \dots, \mathbf{t}_n^{\sigma} = \mathbf{t}_n^{\tau}.$$

Thus

$$\begin{aligned} \mathbf{f}^{\sigma} &= (\mathbf{f}\mathbf{t}_{1} \dots \mathbf{t}_{n})^{\sigma} \\ &= \mathbf{f}^{\sigma}(\mathbf{t}_{1}^{\sigma}, \dots, \mathbf{t}_{n}^{\sigma}) \\ &= \mathbf{f}^{\tau}(\mathbf{t}_{1}^{\tau}, \dots, \mathbf{t}_{n}^{\tau}) \\ &= (\mathbf{f}\mathbf{t}_{1} \dots \mathbf{t}_{n})^{\tau} \\ &= (\mathbf{f}\mathbf{t}_{1} \dots \mathbf{t}_{n})^{\tau} \\ &= \mathbf{t}^{\tau}. \end{aligned} \qquad (by BSD (T2))$$

We say that a term t is *closed* if it does not contain any variable.

a given occurrence of x in α is *bound* if this occurrence is within a subformula of α having the form $\forall x \beta$ (i.e., a universal subformula of α which has x as variable of quantification); all other occurrences of x in α are *free*.

2.2. DEFINITION. A given occurrence of a variable x in a formula α is *free* in α iff it is not *bound* in α . Moreover:

(1) If α is atomic, then every occurrence of x in α is *free* in α .

(2) If $\alpha = \neg \beta$, then a given occurrence of x in α is *free* in α iff the same occurrence is *free* in β .

(3) If $\alpha = \beta \rightarrow \gamma$, then a given occurrence of x in α is *free* in α iff that occurrence is a *free* occurrence of x in β or in γ .

(4) If $\alpha = \forall x\beta$, then every occurrence of x in α is *bound* in α , but if $\alpha = \forall y\beta$, where y is a variable other than x, then a given occurrence of x in α is *free* in α iff that occurrence is *free* in β .

Note that the same variable may have both free and bound occurrences in the same formula. For example, in the formula

definire induttivamente $FV(\alpha)$

We say that x is *free in* α if x has at least one free occurrence in α .

The free variables of α are the variables which are free in α .

dare definizione induttiva dell'insieme di variabili libere in una formula 2.3. THEOREM. Let σ and τ be valuations which have the same universe U and which agree on every free variable of α as well as on every extralogical symbol occurring in α . Then $\alpha^{\sigma} = \alpha^{\tau}$.

PROOF. By induction on deg α . We deal here only with the case where α is universal, leaving the other (and easier) cases to the reader.

Let $\alpha = \forall \mathbf{x} \boldsymbol{\beta}$. Then, by the BSD, $\alpha^{\sigma} = \top$ iff $\boldsymbol{\beta}^{\sigma(\mathbf{x}/u)} = \top$ for every u in the universe U of σ . Now, the extralogical symbols of $\boldsymbol{\beta}$ are exactly those of $\boldsymbol{\alpha}$. Also, the free variables of $\boldsymbol{\beta}$ are either exactly those of $\boldsymbol{\alpha}$, or they are those plus \mathbf{x} . But (for every $u \in U$) $\sigma(\mathbf{x}/u)$ and $\tau(\mathbf{x}/u)$ clearly agree not only on the free variables and extralogical symbols of $\boldsymbol{\alpha}$, but also on \mathbf{x} . Since deg $\boldsymbol{\beta} < \text{deg } \boldsymbol{\alpha}$, it follows from the induction hypothesis that $\boldsymbol{\beta}^{\sigma(\mathbf{x}/u)} = = \boldsymbol{\beta}^{\tau(\mathbf{x}/u)}$. Thus $\alpha^{\sigma} = \top$ iff $\boldsymbol{\beta}^{\tau(\mathbf{x}/u)} = \top$ for all $u \in U$, i.e., iff $\alpha^{\tau} = \top$.

2.4. PROBLEM. Show that if x is not free in α , then α , $\forall x\alpha$ and $\exists x\alpha$ are logically equivalent.

A formula which has no free variables (so that all occurrences of variables in it, if any, are bound) is called a <u>sentence</u>. It follows from Thm. 2.3 that if α is a sentence then the value α^{σ} depends only on the structure \mathfrak{U} underlying σ . In this case we define $\alpha^{\mathfrak{U}}$ to be that value (i.e., $\alpha^{\mathfrak{U}} = \alpha^{\sigma}$ for any valuation σ which \mathfrak{U} underlies).

If $\alpha^{\mathfrak{U}} = \top$, we say that the structure \mathfrak{U} satisfies the sentence α (or α holds in \mathfrak{U} , or \mathfrak{U} is a model for α), briefly, $\mathfrak{U} \models \alpha$. If $\mathfrak{U} \models \varphi$ for every φ in a set Φ of sentences, we say that \mathfrak{U} is a model for Φ .

More generally, let α be a formula such that all the free variables of α are among the first k variables of \mathcal{L} , namely $\mathbf{v}_1, \dots, \mathbf{v}_k$. Then, by Thm 2.3, α^{σ} depends only on the structure \mathfrak{U} underlying σ and on \mathbf{v}_i^{σ} for $i=1,\dots,k$. We write

 $\mathfrak{U}\models \boldsymbol{\alpha} \left[u_1,\ldots,u_k\right]$

when we wish to assert that $\sigma \models \alpha$ for some (hence for every) valuation σ such that \mathfrak{U} underlies σ and such that $\mathbf{v}_i^{\sigma} = u_i$ for i = 1, ..., k.

2.5. PROBLEM. Construct a sentence α containing only logical symbols (i.e., no function symbol and no predicate symbol other than =) such that α holds in a structure \mathfrak{U} iff U has

- (a) at least three members,
- (b) at most three members,
- (c) exactly three members.

2.6. PROBLEM. Using just one binary predicate symbol (but no other predicate symbols and no function symbols) construct a sentence α such that α has no finite model (i.e., no model with finite universe); but if U is any infinite set then α has a model whose universe is U.

2.7. REMARK. From Thm. 2.3 it follows that the various semantic concepts defined in Def. 1.5 are invariant with respect to language. For, if \mathscr{L} and \mathscr{L}' are two first-order languages and σ is an \mathscr{L} -valuation then there is an \mathscr{L}' -valuation σ' which agrees with σ on the symbols which \mathscr{L} and \mathscr{L}' have in common. Any formula α belonging to both \mathscr{L} and \mathscr{L}' will then get the same value under σ and σ' . Thus, e.g., if α is satisfiable as an \mathscr{L} -formula (i.e., satisfied by some \mathscr{L} -valuation) it is also satisfiable as an \mathscr{L}' -formula.

Substitution

Let s and t be terms. We define s(x/t) as the term obtained from s when an occurrence of t is substituted for each occurrence of x in s. In detail, s(x/t) is defined by recursion on deg s as follows:

3.1. DEFINITION. If s = x then s(x/t) = t; but if s = y, where y is a variable other than x, then s(x/t) = y. If $s = fs_1...s_n$, where f is an *n*-ary function symbol and $s_1,...,s_n$ are terms, then $s(x/t) = fs_1(x/t)...s_n(x/t)$.

3.2. THEOREM. If s and t are terms, \mathbf{x} a variable and σ a valuation, then $\mathbf{s}(\mathbf{x}/\mathbf{t})^{\sigma} = \mathbf{s}^{\sigma(\mathbf{x}/t)}$,

where $t = t^{\sigma}$.

formulas

We shall first define $\alpha(x/t)$ only in those cases where the substitution of t for x in α does not lead to "capture" and thus does not require any change of the variable of quantification. Later we shall also define $\alpha(x/t)$ in the remaining cases, by prescribing the changes that must be made in α before the substitution may take place.

We shall say that t is <u>free to be substituted for x in α </u> (briefly, free for x in α) if no free occurrence of x in α is within a subformula of α having the form $\forall y\beta$, where y occurs in t.

If t is free for x in α , we shall define $\alpha(x/t)$ as the result of substituting an occurrence of t for each free occurrence of x in α . (Note that because t is assumed to be free for x in α , all occurrences of variables that have been introduced *via* the substitution are free in $\alpha(x/t)$.) 3.3. DEFINITION. If α is an atomic formula $Ps_1...s_n$, then t is free for x in α . And $\alpha(x/t)$ is defined as $Ps_1(x/t)...s_n(x/t)$. (Here, for n=2, P may also be the logical predicate symbol =.)

If $\alpha = \neg \beta$, then t is free for x in α iff t is free for x in β ; if this is the case, $\alpha(x/t)$ is defined to be $\neg [\beta(x/t)]$.

If $\alpha = \beta \rightarrow \gamma$, then t is free for x in α iff t is free for x in both β and γ ; if this is the case we define $\alpha(x/t)$ as $\beta(x/t) \rightarrow \gamma(x/t)$.

If $\alpha = \forall y\beta$, then t is *free for* x *in* α iff one of the following conditions holds:

(a) x is not free in α ,

(b) x is free in α (hence, in particular, $x \neq y$), and t is *free for* x *in* β , and y does not occur in t.

In case (a) we define $\alpha(x/t)$ to be α . In case (b) we define $\alpha(x/t)$ to be $\forall y [\beta(x/t)]$.

It is easy to verify that if no variable occurring in t has a bound occurrence in α , then t is free for x in α . Also, x is always free for itself in α , and $\alpha(x/x) = \alpha$. 3.4. THEOREM. If t is free for x in α then, for every valuation σ ,

 $\alpha(\mathbf{x}/\mathbf{t})^{\sigma} = \boldsymbol{\alpha}^{\sigma(\mathbf{x}/t)},$

where $t = \mathbf{t}^{\sigma}$.

PROOF. By induction on deg α . We distinguish various cases, corresponding to the cases in Def. 3.2. Here we only deal with the case $\alpha = \forall y\beta$, leaving the other (easier) cases to the reader.

First suppose that x is not free in α . Then $\alpha(x/t) = \alpha$. Also, by Thm. 2.3, $\alpha^{\sigma} = \alpha^{\sigma(x/t)}$. Thus

 $\alpha(\mathbf{x}/t)^{\sigma} = \alpha^{\sigma} = \alpha^{\sigma(\mathbf{x}/t)}.$

Now suppose that x is free in α and t is free for x in β and y does not occur in t. Then we have

(1)
$$\alpha(\mathbf{x}/\mathbf{t})^{\sigma} = (\forall \mathbf{y} [\beta(\mathbf{x}/\mathbf{t})])^{\sigma}.$$

By the BSD,

(2)
$$(\forall y [\beta(x/t)])^{\sigma} = \top$$
 iff $\beta(x/t)^{\sigma(y/u)} = \top$ for all $u \in U$,

where U is the universe of σ . Since deg $\beta < \text{deg } \alpha$, the induction hypothesis yields

(3) $\beta(\mathbf{x}/t)^{\sigma(\mathbf{y}/u)} = \beta^{\sigma(\mathbf{y}/u)(\mathbf{x}/t')},$

where $t' = t^{\sigma(y/u)}$. But y does not occur in t. Hence by Thm. 2.1

 $t' = \mathbf{t}^{\sigma(\mathbf{y}/\mathbf{u})} = \mathbf{t}^{\sigma} = t.$

Also, x and y are different (otherwise x could not be free in α); hence

 $\sigma(\mathbf{y}/u)(\mathbf{x}/t) = \sigma(\mathbf{x}/t)(\mathbf{y}/u).$

For, it makes no difference whether we *first* change the value of x from x^{σ} to t and then change the value of y to u, or vice versa. (It would make a difference if x were the same as y!) Hence we can rewrite (3) as

(4)
$$\beta(\mathbf{x}/t)^{\sigma(\mathbf{y}/u)} = \beta^{\sigma(\mathbf{x}/t)(\mathbf{y}/u)}$$

Now, by the BSD,

$$\beta^{\sigma(\mathbf{x}/t)(\mathbf{y}/u)} = \top$$
 for all $u \in U$ iff $[\forall \mathbf{y}\beta]^{\sigma(\mathbf{x}/t)} = \top$.

Combining this with (1), (2) and (4) we get the required result.

3.5. DEFINITION. If z is a variable which is not free in β but is free for x in β , we say that $\forall z [\beta(x/z)]$ arises from $\forall x\beta$ by *(correct) alphabetic change*. (Note that if z does not occur at all in β , then z certainly satisfies both of the above conditions.)

3.6. THEOREM. If $\forall z [\beta(x/z)]$ arises from $\forall x\beta$ by alphabetic change, then these two formulas are logically equivalent.

Consider a given formula α . Suppose α has a universal subformula, say $\forall y\beta$. Let us replace one occurrence of $\forall y\beta$ in α by an occurrence of a formula $\forall z [\beta(y/z)]$ arising from $\forall y\beta$ by alphabetic change (i.e., z is not free in β , but is free for y in β). We shall say that α' is a *variant* of α (briefly, $\alpha \sim \alpha'$) if α can be transformed into α' by a finite number of applications of steps like the one just described. (We include the case where the number of such steps is 0, so that $\alpha \sim \alpha$.) 3.7. DEFINITION. If α is atomic, then α is its own sole variant.

If $\alpha = \neg \beta$, then the *variants* of α are all formulas of the form $\neg (\beta')$, where β' is a *variant* of β .

If $\alpha = \beta \rightarrow \gamma$, then the *variants* of α are all formulas of the form $\beta' \rightarrow \gamma'$, where β' and γ' are *variants* of β and γ respectively.

If $\alpha = \forall y\beta$, then the *variants* of α are all formulas $\forall y\beta'$, where β' is a *variant* of β , as well as all formulas $\forall z [\beta'(y/z)]$ obtained from such $\forall y\beta'$ by alphabetic change.

(i) Equivalence of formulas: in fact what we call a formula is indeed an equivalence class: we identify two formulas which differ only by the names of their bound variables, precisely: $A \sim A$; if $A \sim A'$ and $B \sim B'$, then $\neg A \sim \neg A', A \wedge B \sim A' \wedge B', A \vee B \sim A' \vee B', A \to B \sim A' \to B'$. If $A[x_n]$ and $A'[x_m]$ are formulas, let x_p be a variable occurring neither in A nor in A'; then, if $A[x_p] \sim A'[x_p]$ we have $\forall x_n A[x_n] \sim \forall x_m A'[x_m]$ and $\exists x_n A[x_n] \sim \exists x_m A[x_m]$. An immediate consequence of the definition is that, given C, it is possible to find D such that $C \sim D$ and

- no variable in D is both free and bound

- any bound variable in D occurs in the scope of only one occurrence of a quantifier.