Utilizzo di funzioni iperboliche per la risoluzione di particolari integrali

DAVIDE BOSCAINI

In seguito alla domanda di uno studente ho scelto di scrivere queste brevi note su alcuni integrali risolvibili mediante funzioni trigonometriche iperboliche. Invito chi trovasse eventuali errori a segnalarli presso davide.boscaini@studenti.univr.it.

Definizione 1. Si definisce seno iperbolico la funzione

$$\sinh x := \frac{e^x - e^{-x}}{2},$$

e, di conseguenza, coseno iperbolico la funzione

$$\cosh x := \frac{e^x + e^{-x}}{2},$$

dove per x si intende un qualsiasi numero reale.

Già a questo punto vi sorgeranno delle domande: perché si sono scelti proprio i nomi seno e coseno se tali funzioni sono combinazioni lineari di esponenziali? E perché si è scelto proprio l'aggettivo iperbolici? Il motivo è che, così come le funzioni trigonometriche "classiche" sin x e cos x ci forniscono le coordinate dei punti della circonferenza di raggio unitario $x^2+y^2=1$, le nuove funzioni sinh x e cosh x ci forniscono le coordinate dell'iperbole equilatera di asintoti le bisettrici, di equazione $x^2-y^2=1$.

Cominciamo a studiare le principali proprietà di tali funzioni:

• se $\sin x$ e $\cos x$ soddisfano l'identità

$$\sin^2 x + \cos^2 x = 1,\tag{*}$$

i loro "parenti" iperbolici soddisfano l'identità

$$\sinh^2 x - \cosh^2 x = 1,$$

infatti dalla definizione 1 segue che

$$\sinh^2 x - \cosh^2 x = \frac{e^{2x} - e^{-2x}}{4} - \frac{e^{2x} + e^{-2x}}{4} = 1.$$

• la funzione inversa di $\sinh x$ è

$$\operatorname{arcsinh} x := \log\left(x + \sqrt{1 + x^2}\right),\,$$

mentre la funzione inversa di $\cosh x$ è

$$\operatorname{arccosh} x := \log\left(x + \sqrt{1 - x^2}\right);$$

• se $\sin' x = \cos x$ e $\cos' x = -\sin x$, ora vale invece $\sinh' x = \cosh x$ e $\cosh' x = \sinh x$, infatti

$$\sinh' x = \left(\frac{e^x - e^{-x}}{2}\right)' = \frac{e^x}{2} - \left(-\frac{e^{-x}}{2}\right) = \frac{e^x + e^{-x}}{2} =: \cosh x;$$

• di conseguenza vale

$$\int \sinh x dx = \cosh x$$

 ϵ

$$\int \cosh x dx = \sinh x,$$

infatti

$$\int \sinh x dx = \frac{1}{2} \int \left(e^x - e^{-x} \right) dx = \frac{1}{2} \left(e^x - \left(-e^{-x} \right) \right) = \frac{e^x + e^{-x}}{2} =: \cosh x.$$

Chiarita quindi la motivazione che sta alla base dei nomi assegnati a tali funzioni e le loro principali proprietà, cerchiamo di capire come ci possono aiutare nel cercare le primitive di integrali del tipo

$$\int \sqrt{1+x^2} dx$$

o

$$\int \frac{1}{\sqrt{1+x^2}} dx.$$

Esercizio 1. Calcolare una primitiva di

$$\int \sqrt{1+x^2} dx.$$

Soluzione. Una possibilità per risolvere questo tipo di integrali è quella per sostituzione con una funzione trigonometrica iperbolica. In questo caso poniamo $x=\sinh t$ e, di conseguenza, avremo $dx=\cosh t dt$. Allora

$$\int \sqrt{1+x^2} dx = \int \sqrt{1+\sinh^2 t} \cosh t dt = \int \cosh^2 t dt$$
$$= \sinh t \cosh t - \int \sinh^2 t dt + c,$$

dove, nell'ultimo passaggio, si è integrato per parti considerando il "primo" $\cosh t$ come funzione da integrare ed il "secondo" $\cosh t$ come funzione da derivare. Ricordandosi ora dell'identità (*) possiamo sostituire l'integranda $\sinh^2 t$ dell'ultimo integrale con $\cosh^2 t - 1$, ottenendo

$$\int \cosh^2 t dt = \sinh t \cosh t - \int \sinh^2 t dt + c$$

$$= \sinh t \cosh t - \int \left(\cosh^2 t - 1\right) dt + c$$

$$= \sinh t \cosh t - \int \cosh^2 t dt + \int dt + c$$

$$= t + \sinh t \cosh t - \int \cosh^2 t dt + c,$$

e portando al primo membro l'ultimo integrale troviamo

$$2\int \cosh^2 t dt = t + \sinh t \cosh t + c,$$

cioè

$$\int \cosh^2 t dt = \frac{t}{2} + \frac{1}{2} \sinh t \cosh t + c.$$

La sostituzione fatta è stata $x = \sinh t$, segue quindi che

$$t = \operatorname{arcsinh} x$$

e che

$$\cosh t = \sqrt{1 + \sinh^2 t} = \sqrt{1 + x^2}.$$

Ma allora

$$\frac{t}{2} + \frac{1}{2}\sinh t\cosh t = \frac{1}{2}\left(\operatorname{arcsinh} x + x\sqrt{1+x^2}\right)$$

è una primitiva dell'integrale assegnato, precisamente quella che corrisponde alla scelta c=0.

Esercizio 2. Calcolare una primitiva di

$$\int \frac{1}{\sqrt{1+x^2}} dx.$$

Soluzione. Allo stesso modo dell'esercizio precedente proviamo a risolvere questo integrale con la sostituzione $x = \sinh t$, da cui segue $dx = \cosh t dt$. In questo caso allora avremo

$$\int \frac{1}{\sqrt{1+x^2}} dx = \int \frac{1}{\sqrt{1+\sinh^2 t}} \cosh t dt$$

$$\stackrel{(*)}{=} \int \frac{1}{\sqrt{\cosh^2 t}} \cosh t dt$$

$$= \int dt$$

$$= t + c$$

Ora se $x = \sinh t$, $t = \operatorname{arcsinh} x$ e quindi una primitiva dell'integrale assegnato è proprio la funzione inversa del seno iperbolico arcsinh x.

Esercizio 3. Calcolare una primitiva di

$$\int \frac{\cos x}{\sqrt{1+\sin^2 x}} dx.$$

Soluzione. Sia $y = \sin x$, allora $dy = \cos x dx$ e possiamo riscrivere l'integrale assegnato come

$$\int \frac{1}{\sqrt{1+y^2}} dy.$$

Ma allora, seguendo i passi della soluzione precedente, troviamo che le primitive sono

$$\operatorname{arcsinh} y + c$$
,

cioè

$$\arcsin(\sin x) + c.$$