
Mean Shift: theory and applications
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Fundamentals
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• A technique for finding modes in a set of 
data samples, manifesting an underlying 
probability density function (PDF) in RN

• The samples (and the related PDF) can 
represent and characterize different objects 
features:

– Position

– Color

– ...

What is Mean Shift ?



Preliminaries: Parzen Windows 



Non-Parametric Density Estimation

Assumption : The data points are sampled from an underlying PDF

Assumed Underlying PDF Real Data Samples

Data point density

implies PDF value !



Assumed Underlying PDF Real Data Samples

Non-Parametric Density Estimation



Assumed Underlying PDF Real Data Samples

Non-Parametric Density Estimation



Kernel Density Estimation
Parzen Windows - General Framework

Kernel Properties:

• Normalized

• Symmetric

• Exponential weight 

decay

• Other (see [Meer 02])

Kernel K(  ): function of some finite number 

of data points x1…xn

Data

. .



Kernel Density Estimation 
Parzen Windows - Function Forms

In practice one uses the forms:

or

Same function on each dimension Function of vector length only

Kernel K(  ): function of some finite number 

of data points x1…xn

.

The 1D function k is called profile of the kernel  



Kernel Density Estimation
Various Kernels

Examples:

• Epanechnikov Kernel

• Uniform Kernel

• Normal Kernel

Kernel K(  ): function of some finite number 

of data points x1…xn

.



Mean Shift



Kernel Density Estimation

Gradient

Give up estimating the PDF !

Estimate ONLY the gradient

Using the

Kernel form:

We get : Size of window



Kernel Density EstimationKernel Density Estimation

Gradient

Computing The Mean Shift



Computing The Mean Shift

Yet another Kernel 

density estimation !

Simple Mean Shift procedure:

• Compute Mean Shift vector

•Translate the Kernel window by m(x) until convergence (m(x)<thresh)



Mean Shift Mode Detection

Updated Mean Shift Procedure:

• Find all modes using the Simple Mean Shift Procedure

• Prune modes by perturbing them (find saddle points and plateaus)

• Prune nearby – take highest mode in the window

What happens if we

reach a saddle point 

?

Perturb the mode position

and check if we return back



Mean Shift Properties

• Automatic convergence speed – the Mean Shift  

vector size depends on the gradient itself.

• Near maxima, the steps are small and refined

• Convergence is guaranteed for infinitesimal  

steps only  infinitely convergent

(therefore set a lower bound on the minimal distance    

covered after a step) [Comaniciu 2002, Chong 1995].

• For Uniform Kernel (      ), convergence is achieved in

a finite number of steps [Comaniciu 2002].

• Normal Kernel (        ) exhibits a smooth trajectory, but 

is slower than Uniform Kernel (      ) [Comaniciu 2002].

Adaptive

Gradient 

Ascent

90°<α<135°

α



Facts - Real Modality Analysis

Tessellate the space 

with windows
Run the procedure in parallel



Facts - Real Modality Analysis

The blue data points were traversed by the windows towards the mode



Facts - Data Analysis

Each point xi generates a trajectory formed by y1...yC

xi=y0

y1

y2

y3 y4

y5

yC



Real Modality Analysis
An example

Window tracks signify the steepest ascent directions



Remarks - Parzen Windows vs Mean Shift

Non-parametric

Density Estimation

Non-parametric

Density GRADIENT Estimation 

(Mean Shift)

Data

Discrete PDF Representation

PDF Analysis

Parzen Windows

Mean Shift



Mean Shift Strengths & Weaknesses

Strengths :

• Application independent technique

• Suitable for real data analysis

• Does not assume any prior shape

(e.g. elliptical) on data clusters

• Can handle arbitrary feature

spaces

• Only ONE parameter to choose

- h (window size)

Weaknesses :

• The window size (bandwidth 

selection) is not trivial

- Inappropriate window size can

cause modes to be merged, 

or generate additional “shallow”

modes  Use adaptive window

size



Mean Shift applications: Clustering



Clustering

Attraction basin : the region for which all trajectories

lead to the same mode 

Cluster : All data points in the attraction basin of a mode



ClusteringClustering
Synthetic ExamplesSynthetic Examples

Simple Modal Structures

Complex Modal Structures



Clustering
Real Example

Initial window

centers

Modes found
Modes after

pruning

Final clusters

Feature space:

L*u*v representation



Clustering
Real Example

L*u*v space representation



Clustering
Real Example

From the 

attraction basin

points depart 

and reach 

different modes

2D (L*u) 

space 

representation

Final clusters



Mean Shift applications: 

Discontinuity Preserving Smoothing



Discontinuity Preserving Smoothing

xs1

xs2

xr

The image gray levels…

… can be viewed as data points

in the xs, xr space (joined spatial

And color space)

xs1=x xs2=y

xr=ldg



Discontinuity Preserving Smoothing

Feature space : Joint domain = spatial coordinates + color space

Meaning : treat the image as data points in the spatial and gray level domain

Image Data

(slice)

Mean Shift

vectors

Smoothing

result



Discontinuity Preserving Smoothing

xs2

xr
Algorithm:

1) For each pixel, run the MS 

procedure generating in the joint 

spatial-chromatic domain a 

trajectory 

x0 = y0, y1, ..., yC

2) assign to each pixel the gray 

level of the mode reached 

x0=y0

y1
yC

...yrC

ysC

yr0

ys0

yrC

x0=y0

y1

...
yC



Discontinuity Preserving Smoothing

The effect of 

window size

in spatial and

range spaces



Discontinuity Preserving Smoothing
Example

Original After smoothing



Discontinuity Preserving Smoothing
Example

Original After smoothing



Mean Shift applications: 

2D Segmentation



Algorithm:

• Run Filtering (discontinuity preserving 

smoothing)

• Cluster the clusters which are closer than     

window size

Segmentation

Image Data  (slice) Mean Shift vectors

Segmentation result

Smoothing result



Segmentation
Example



Segmentation
Example
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Segmentation
Example

…when feature space is only 

gray levels…



Segmentation
Example



Segmentation
Example



Mean Shift applications: 

N-D Segmentation



N-D segmentation

Feature space : Joint domain = 3D spatial coordinates + curvature + ... 

Problem : How to choose the kernel bandwidths!

...

Proposed Solution : A data driven stability criteria [Fukunaga 1990]

3D points



Stability criteria 

• 1. Separate choice of the best bandwidth: 
– for each sub-domain, perform MS clustering, using

different increasing values of h. 

– After that, choose as best bandwidth value h(best) the 
center of the largest operating range over which the 
same number of partitions are obtained for the given
data.

• 2. Final clustering: 
– perform the mean shift clustering in the joint domain 

(position + curvature + etc.) using the kernel formed
by concatenating the optimal sub-domain bandwidth
values obtained in step 2)

h(best) = [h(p,best) h(c,best) ... h(etc, best) ]



Stability criteria - example 

1) Standardization

• Input: a set of data samples xi=[xi,s,xi,n,xi,c]

– xi,s : spatial coordinates 

– xi,n: normal coordinates 

– xi,c: curvature coordinates 

• Proposed algorithm:



Stability criteria - example 

3) Final clustering

2)
Separate 

choice

of the best 

bandwidth



Stability criteria - real data results 

Original 

(Angel,

Minolta dataset)

Result



Stability criteria - real data results 

Original 

(Acquired with 

echoscope 

sensor)

Result



Stability criteria - real data results 



Another field of application: Medical-Imaging

The problem

MANUALLY LABELED

AREA!!!

GOAL: 

Automatize

this process 

with Automatic 

Mean Shift



Another field of application: Medical-Imaging

Input Result



Conclusions 

• A robust modes estimation technique has been
presented

• The technique is adaptive and non parametric

– several applications

– Only one tuning parameter to set is the kernel bandwidth

• We propose a data driven stability technique, that 
works well for N-D segmentations

• Application of our technique to other fields are 
currently under development (f.e. biomedical imaging) 
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END! (and thanks to Denis Simakov)

http://www.wisdom.weizmann.ac.il/%7Edeniss/
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