Front End: Syntax Analysis

Bottom-Up Parsing

Parsers

@ Top-down
Construct leftmost derivations starting from the start symbol.
@ Bottom-up
Construct (reverse) rightmost derivations starting from the
input string by reducing it to the start symbol.

Both parsers are guided by the input string in the search of a
derivation.

Bottom-up Parsing

Intuition: construct the parse tree from the leaves to the root.

Grammar: C S i T AT T

AL SR T

A—z|Y | x \L} ixw} ixwl iij
Example: Bowl|Z I ‘ e Xwhooxw

Y —zb

Z — wp

Input zw.

Bottom-up parsing

Constructing a parse tree for an input string starting from the
leaves towards the root.

Example 1l
E - E+T|T
T — T«F|F
F — (E)|id
id * id Foxoid T * id T % F T E
| | /N \
id ' r id T % F T
| | \ | / I\
id id 1‘“ id T % F
id F id
id

Figure 4.25: A bottom-up parse for id *id

Shift-Reduce Parsing

A shift-reduce parser is a form of bottom-up parser whose primary
operations are

@ Shift: shift the next input symbol

@ Reduce: identify the handle and replace it with the head of
the appropriate production.

A reduction step is the reverse of a derivation step (= a
non-terminal is replaced by the body of one of its productions).
Thus, reducing corresponds to constructing a derivation in reverse.

Example: The parse in Fig. 4.25 corresponds to the rightmost
derivation

E=T=T+F=Txid= Fxid=id+id

Handle

A handle is a substring that matches the body of a production.

RIGHT SENTENTIAL FORM HANDLE | REDUCING PRODUCTION

idy % ido id, F—id
F +id, F T F
T +idy id, F—id

T«F| T+F |T>Tx%F
T T E—=T

Figure 4.26: Handles during a parse of id; * id,

Handle: Formal Definition

« 3 w

Figure 4.27: A handle A — 3 in the parse tree for afw

Definition
A handle for v = affw s.t. S =7, *Aw =, 7 is
@ a production rule A — 3, and

@ a position p in v where 5 can be located.

Stack Implementation

A stack holds grammar symbols and an input buffer holds the rest
of the string to be parsed.

STACK INPUT ACTION

$ id; #id, § shift

Sid, +1dy $ reduce by F — id
SF #id2 $ reduce by T' — F
5T +1dy § shift

ST = id, $ shift

57+ id. $ reduce by F —id
ST+ F $ reduce by T'—= T+ F
§T $ reduce by £ =T
$E § accept

Figure 4.28: Configurations of a shift-reduce parser on input id, *id,

reduce by A — x
reduce by B — w
reduce by S — AB
accept

shift
shift

INPUT ACTION

zw$
w$
w$
$

$
$

STACK
$

$z

$A
$Aw
$AB
$S

Example

Conflict I: Shift-Reduce

There are CF grammars for which the shift-reduce parsing does not
work.

stmt — if expr then stmt
| if expr then stmt else stmt

| other

With the following configuration we cannot decide whether to shift
or to reduce.

STACK INPUT

$... if expr then stmt else ...

Conflict Il: Reduce-Reduce

Consider a language where procedures and arrays share the same

syntax.
(1) stmt — id (parameter_list)
(2) stmt — expr := expr
(3) parameter_list — parameter_list , parameter
(4) parameter_list — parameter
(5) parameter — id
(6) expr — id (expr_list)
(7) expr — id
(8) exprlist — exprolist , expr
(9) expr_list — expr

Figure 4.30: Productions involving procedure calls and array references

Which production should we choose with configuration

STACK INPUT
$...id (id id,id)...

LR Parsing

LR(k) parsing, introduce by D. Knuth in 1965, is today the most
prevalent type of bottom-up parsing.

L is for Left-to-right scanning of the input,

R is for reverse Rightmost derivation,

k is the number of lookahead tokens.

Different types:

@ Simple LR or SLR, the easiest method for constructing
shift-reduce parsers,

@ Canonical LR,
o LALR.

The last two types are used in the majority of LR parsers.

The LR-Parsing Model

Input ‘al ‘ ‘a,- ‘ ‘a,,’$ ‘
LR
Stack S Parsing > Output
. Program
Sm—1

- VRN

ACTION GOTO

Figure 4.35: Model of an LR parser

The parsing table, consisting of the ACTION and GOTO functions,
is the only variable part. The stack content is a sequence of
states, corresponding each to a grammar symbol.

The LR-Parsing Algorithm

All LR-parsers behave as summarised below: the only difference is
the info held by the parsing table.

let a be the first symbol of w$;
while(1) { /* repeat forever */
let s be the state on top of the stack;
if (ACTION([s,a| = shift ¢) {
push # onto the stack;
let a be the next input symbol;
} else if (ACTION|[s,a] = reduce A — 3) {
pop |3] symbols off the stack;
let state £ now be on top of the stack;
push GOTO[t, A] onto the stack;
output the production A — /3;
} else if (ACTION|[s,a| = accept) break; /* parsing is done */
else call error-recovery routine;

Figure 4.36: LR-parsing program

Conflict Resolution

STACK INpPUT ACTION

$ id; *id, $ shift

$id, #idy $ reduce by F = id
§F #ida$ reduce by T' = F
§T +1id2 $ shift

$T * id2 $ shift

$T # idy S reduce by F — id
LA § reduce by I' = 1T+ F
$7 S reduce by E =T

S E § accept

Figure 4.28: Configurations of a shift-reduce parser on input id, *id.

How does a shift-reduce parser know when to shift and when to
reduce?

Example:

In Fig. 4.28, how does the parser know that T is not yet a handle
and that the appropriate action is a shift?

Constructing LR-Parsing Table

LR parsers are table-driven, similarly to the non-recursive LL
parsers.

In order to recognise the right-hand side of a production, an LR
parser must be able to recognise handles of right sentential forms
when they appear on top of the stack.

: maintaining states to keep track of where we are in a parse
can help an LR parser to decide when to shift and when to reduce.
Construct a Finite Automaton.

The SLR method constructs a parsing table on the base of LR(0)
items and LR(0) automata.

ltems

Definition
An LR(0) item (or simply item) of a grammar G is a production of
G with a dot at some position of the body.

Example:
For the production A — XYZ we get the items

— oXYZ
— XeYZ
— XY eZ
A — XYZe

> > >

A state in our FA is a set of items.

Closure

Given a set of items /, the closure of I is computed as follows:

SetOfltems CLOSURE(]) {
J =1
repeat
for (cach item A — a-Bf in .J)
for (each production B — v of GG)
if (B— -visnotin J)
add B — v to J;

until no more items are added to .J on one round;
return .J;

Figure 4.32: Computation of CLOSURE

Intuition: if item A — a e B is in CLOSURE(/), then at some
point the parser might see a substring derivable from B/ as input.

Example

E —E
E-E+T|T
T—>TF|F
F — (E) | id

lf1={E —+E},

then CLOSURE(]) is q

Example

E —E
E—-E+T|T
T—-TF|F
F—(E)|id
E—--E
E—--E+T
|f|={E’—>-E}, E—-.T
then CLOSURE(]) is q T—.T*F
T—.F
F—<(E)

F—-id

The GOTO Function

If A— e XS isinl, GOTO(/, X) contains
CLOSURE(A — o ¢ XJ3).

void items(G') {
C = {cLosurE({[S" = -S|} };
repeat
for (cach set of items [in (')
for (cach grammar symbol X)
if (GoTo(/, X) is not empty and not in C')
add coTo(l, X) to
until no new sets of items are added to ' on a round;

Figure 4.33: Computation of the canonical collection of sets of LR(0) items

E —>E
G- E-E+TIT I= FE—>E-
T>TF|F E—-E«+T
F—(E)|id
Y
GOTO(l,+) =

E —E

E_>E+T|T I= E’—E-
= T-TFIF E—-Ee+T
F—(E)]|id

f[A—=a*XB]eEl,
GOTO(l, X) contains
CLOSURE(A — aXeB)

E—-E+.T
T—.T*F
GOTO(L,+)= |7_ F
F—.(E)
F—.id

The LR(0) Automaton

G’ :augmented grammar

LR(0) automaton for G’

(Q, go,GOTO: Q x (Te' U Ng') = Q, F)
where:

Q=F =items(G’),

qo = CLOSURE({S’ — *S})

Example

Construction of the LR(0) automaton
for the augmented grammar:

E —E
E-E+T|T
T>TF|F

F—(E)|id

E —E
E-E+T|T
T—>TF|F
F - (E) | id

T F-

accept
I
E—T 757« F|F
5 I
| T—>TxF.
b7 id
[3 n
Foid. id
fia
I4 ~— Ig)]11
Fo(-B ESE-+T F>(E)
- F(E-)
\ (
L (
F
Is F

	Bottom-up

