
Front End: Syntax Analysis
Bottom-Up Parsing

Parsers

Top-down
Construct leftmost derivations starting from the start symbol.

Bottom-up
Construct (reverse) rightmost derivations starting from the
input string by reducing it to the start symbol.

Both parsers are guided by the input string in the search of a
derivation.

Bottom-up Parsing

Bottom-up parsing
Constructing a parse tree for an input string starting from the
leaves towards the root.

Example II

E → E + T | T
T → T ∗ F | F
F → (E) | id

Shift-Reduce Parsing

A shift-reduce parser is a form of bottom-up parser whose primary
operations are

Shift: shift the next input symbol

Reduce: identify the handle and replace it with the head of
the appropriate production.

A reduction step is the reverse of a derivation step (= a
non-terminal is replaced by the body of one of its productions).
Thus, reducing corresponds to constructing a derivation in reverse.

Example: The parse in Fig. 4.25 corresponds to the rightmost
derivation

E ⇒ T ⇒ T ∗ F ⇒ T ∗ id⇒ F ∗ id⇒ id ∗ id

Handle

A handle is a substring that matches the body of a production.

Handle: Formal Definition

Definition

A handle for γ = αβw s.t. S ⇒∗
rm αAw ⇒rm γ is

1 a production rule A→ β, and

2 a position p in γ where β can be located.

Stack Implementation

A stack holds grammar symbols and an input buffer holds the rest
of the string to be parsed.

Example

Conflict I: Shift-Reduce

There are CF grammars for which the shift-reduce parsing does not
work.

stmt → if expr then stmt

| if expr then stmt else stmt

| other

With the following configuration we cannot decide whether to shift
or to reduce.

STACK INPUT

$. . . if expr then stmt else . . .

Conflict II: Reduce-Reduce
Consider a language where procedures and arrays share the same
syntax.

Which production should we choose with configuration

STACK INPUT

$. . . id (id id, id) . . .

LR Parsing

LR(k) parsing, introduce by D. Knuth in 1965, is today the most
prevalent type of bottom-up parsing.
L is for Left-to-right scanning of the input,
R is for reverse R ightmost derivation,
k is the number of lookahead tokens.

Different types:

Simple LR or SLR, the easiest method for constructing
shift-reduce parsers,

Canonical LR,

LALR.

The last two types are used in the majority of LR parsers.

The LR-Parsing Model

The parsing table, consisting of the ACTION and GOTO functions,
is the only variable part. The stack content is a sequence of
states, corresponding each to a grammar symbol.

The LR-Parsing Algorithm

All LR-parsers behave as summarised below: the only difference is
the info held by the parsing table.

Conflict Resolution

How does a shift-reduce parser know when to shift and when to
reduce?
Example:
In Fig. 4.28, how does the parser know that T is not yet a handle
and that the appropriate action is a shift?

Constructing LR-Parsing Table

LR parsers are table-driven, similarly to the non-recursive LL
parsers.
In order to recognise the right-hand side of a production, an LR
parser must be able to recognise handles of right sentential forms
when they appear on top of the stack.
Idea: maintaining states to keep track of where we are in a parse
can help an LR parser to decide when to shift and when to reduce.
Construct a Finite Automaton.
The SLR method constructs a parsing table on the base of LR(0)
items and LR(0) automata.

Items

Definition

An LR(0) item (or simply item) of a grammar G is a production of
G with a dot at some position of the body.

Example:
For the production A→ XYZ we get the items

A → •XYZ
A → X • YZ
A → XY • Z
A → XYZ•

A state in our FA is a set of items.

Closure

Given a set of items I , the closure of I is computed as follows:

Intuition: if item A→ α • Bβ is in CLOSURE(I), then at some
point the parser might see a substring derivable from Bβ as input.

Example

If I = { E’ → •E },
then CLOSURE(I) is

E’ → E
E → E + T | T
T → T* F | F
F → (E) | id

?

Example

If I = { Eʼ → •E },
then CLOSURE(I) is

E’ → E
E → E + T | T
T → T* F | F
F → (E) | id

E’ → • E
E → • E + T
E → •T
T → •T * F
T → •F
F → •(E)
F → • id

The GOTO Function

If A→ α • Xβ is in I , GOTO(I ,X) contains
CLOSURE(A→ α • Xβ).

E’ → E
E → E + T | T
T → T* F | F
F → (E) | id

G =
E’ → E •
E → E • + T

I =

GOTO(I,+) = ?

E’ → E
E → E + T | T
T → T* F | F
F → (E) | id

G =
E’ → E •
E → E • + T

I =

GOTO(I,+) =

Example

 I

E’ ! E .

E ! E . + T

20

If [A → α • X β] ∈ I,
GOTO(I, X) contains
CLOSURE(A → αX•β)

The LR(0) Automaton

G’ : augmented grammar

LR(0) automaton for G’

〈Q, q0, GOTO: Q × (TG’ ∪ NG’) → Q, F〉
where:
Q = F = items(G’),
q0 = CLOSURE({S’ → •S})

Example

E’ → E
E → E + T | T
T → T* F | F
F → (E) | id

Construction of the LR(0) automaton
for the augmented grammar:

E’ → E
E → E + T | T
T → T* F | F
F → (E) | id

	Bottom-up

