Quivers, algebras and representations Exercises

Throughout, Q will denote a quiver and \mathbb{K} an algebraically closed field.

Exercise 1. Let $Q = \bullet$ \longrightarrow \bullet be the Kronecker quiver. Show that there is an isomorphism of algebras

$$\mathbb{K}Q \cong \left(\begin{array}{cc} \mathbb{K} & 0\\ \mathbb{K}^2 & \mathbb{K} \end{array}\right)$$

where we view \mathbb{K}^2 as a \mathbb{K} - \mathbb{K} -bimodule in the obvious way.

Exercise 2. Show that, in general, the set $\{e_i \mid i \in Q_0\}$ of lazy paths in Q is not the unique complete set of primitive orthogonal idempotents for $\mathbb{K}Q$. <u>Hint</u>: Consider for example the quiver $Q = \bullet \longrightarrow \bullet$.

Exercise 3. A \mathbb{K} -algebra A is called connected if 0 and 1 are the only idempotents that lie in the center of A. Show that the path algebra $\mathbb{K}Q$ is connected if and only if the quiver Q is connected.

Exercise 4. Let $Q = \alpha \bigcirc \bullet \bigcirc \beta$. Decide if the following ideals are admissible:

- $I_1 = \langle \beta^2, \alpha^3, \beta \alpha \beta \rangle.$
- $I_2 = \langle \alpha \beta \beta \alpha, \beta^2, \alpha^2 \rangle.$

Exercise 5. Let $Q = \bullet$ \bigcirc . Show that $rad(\mathbb{C}Q) = 0$. In particular, $rad(\mathbb{C}Q)$ is not given by the arrow ideal of $\mathbb{C}Q$.

Exercise 6. Give an example of a finite dimensional \mathbb{K} -algebra A with $rad(A)^{1000} \neq 0$ and $rad(A)^{1001} = 0$.

Exercise 7. Let $\Phi : \mathbb{K}Q_A \to A$ be the surjective algebra homomorphism constructed in the proof of the main theorem in §3. Show that $ker(\Phi) \subseteq R^2_{Q_A}$, where R_{Q_A} denotes the arrow ideal of $\mathbb{K}Q_A$.

Exercise 8. Write the following two K-algebras as bound path algebras:

•
$$A_1 = \begin{pmatrix} \mathbb{K} & 0 & 0 & 0 \\ \mathbb{K} & \mathbb{K} & 0 & 0 \\ 0 & 0 & \mathbb{K} & 0 \\ \mathbb{K}^3 & \mathbb{K}^3 & \mathbb{K} & \mathbb{K} \end{pmatrix}$$
.
• $A_2 = B/J$ where $B = \{\begin{pmatrix} a & 0 & 0 \\ c & b & 0 \\ e & d & a \end{pmatrix} \mid a, b, c, d, e \in \mathbb{K}\}$ and J is given
 $by \{\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ e & 0 & 0 \end{pmatrix} \mid e \in \mathbb{K}\}.$

Exercise 9. Let $Q = \bullet \longrightarrow \bullet \longrightarrow \bullet$. Describe all (finite dimensional) indecomposable representations of Q (up to isomorphism) and all possible morphisms between them.

Exercise 10. Consider the quiver

Show that there are infinitely many pairwise non-isomorphic indecomposable representations of Q. <u>Hint</u>: Consider representations of the form

for $\lambda, \mu \in \mathbb{K}$ and $\mu \neq 0$.