
Chapter 1

Linguaggio Programmazione Matlab-Simulink (2017/2018)

Info Corso MATLAB
 Docente: Maris Bogdan Mihai

 Ufficio: Ca' Vignal 2, Piano 1, Stanza 61, lab. Altair (-2)

 E-mail: bogdan.maris@univr.it

 Lezioni:

 giovedì dalle 14:30 alle 17:30

 8 lezioni da 3 ore ciascuna

 Modalità d’esame:

(frequenza al corso non è obbligatoria)

 Prova finale: scritto || test al calcolatore

 Idoneo|| non idoneo

Info Corso MATLAB
 Testo di riferimento disponibile in biblioteca:

“Matlab: A Practical Introduction to Programming and
Problem Solving” third edition by Stormy Attaway (in
inglese)

 Materiale on-line sul sito del corso: slide delle lezioni,

esercizi, codice MATLAB,…

http://www.di.univr.it/?ent=oi&aa=2017%2F2018&codice
Cs=S24&codins=4S007126&cs=420&discr=&discrCd=&la
ng=it

Introduction to MATLAB
 MATrix LABoratory

 Many mathematical and graphical applications

 Has programming constructs but not a programming
language

 Also has many built-in functions

 Can use interactively in the Command Window, or
write your own programs

 In the Command Window the >> is the prompt

 At the prompt, enter a command or expression

 MATLAB will respond with a result

MATLAB Desktop Environment
 Command Window is large window in middle; Current Folder Window

to left, Workspace and Command History to right

Desktop Environment
 Current Folder window shows files; the folder set as

the Current Folder is where files will be saved

 Workspace Window: shows variables (discussed next)

 Command History Window: shows commands that
have been entered and on what date

 Toolstrip on top has tabs for HOME (the default),
PLOTS, and APPS

 HOME tab is divided into functional sections FILE,
VARIABLE, CODE, ENVIRONMENT, RESOURCES

 Under ENVIRONMENT, Layout allows for
customization of the Desktop Environment

Variables and Assignments
 To store a value, use a variable

 one way to put a value in a variable is with an
assignment statement

 general form:
variable = expression

 The order is important

 variable name on the left

 the assignment operator “=” (Note: this does NOT mean
equality)

 expression on the right

Variables and Assignments
 For example, in the Command Window at the prompt:

>> mynum = 6
mynum =

6
>>

 This assigns the result of the expression, 6, to a variable called mynum
 A semicolon suppresses the output but still makes the assignment

>> mynum = 6;
>>

 If just an expression is entered at the prompt, the result will be stored in a
default variable called ans which is re-used every time just an expression is
entered

>> 7 + 4
ans =

11
>>

Modifying Variables
 Initialize a variable (put its first value in it)

mynum = 5;

 Change a variable (e.g. by adding 3 to it)
mynum = mynum + 3;

 Increment by one
mynum = mynum + 1;

 Decrement by two
mynum = mynum – 2;

NOTE: after this sequence, mynum would have the value
7 (5+3+1-2)

Variable names
 Names must begin with a letter of the alphabet

 After that names can contain letters, digits, and the
underscore character _

 MATLAB is case-sensitive

 the built-in function namelengthmax tells what the
limit is for the length of a variable name

 Names should be mnemonic (they should make
sense!)

 The commands who and whos will show variables

 To delete variables: clear

Types
 Every expression and variable has an associated type,

or class
 Real numbers: single, double

 Integer types: numbers in the names are the number of
bits used to store a value of that type
 Signed integers: int8, int16, int32, int64

 Unsigned integers: uint8, uint16, uint32, uint64

 Characters and strings: char

 True/false: logical

 The default type is double

Expressions
 Expressions can contain values, variables that have already been

created, operators, built-in functions, and parentheses
 Operators include:

+ addition
- negation, subtraction
* multiplication
/ division (divided by e.g. 10/5 is 2)
\ division (divided into e.g. 5\10 is 2)
^ exponentiation (e.g. 5^2 is 25)

 Operator precedence:
() parentheses
^ exponentiation
- negation
*, /, \ all multiplication and division
+, - addition and subtraction

Formatting

 format command has many options, e.g:

 long, short

 loose, compact

 Continue long expressions on next line using ellipsis:
>> 3 + 55 - 62 + 4 - 5 ...

+ 22 - 1

ans =

16

 Scientific or exponential notation: use e for exponent
of 10 raised to a power

 e.g. 3e5 means 3 * 10^5

Operator Precedence
 Some operators have precedence over others

 Precedence list (highest to lowest) so far:
() parentheses

^ exponentiation

- negation

*, /, \ all multiplication and division

+, - addition and subtraction

 Nested parentheses: expressions in inner parentheses
are evaluated first

Built-in functions and help
 There are many, MANY built-in functions in MATLAB

 Related functions are grouped into help topics

 To see a list of help topics, type “help” at the prompt:
>> help

 To find the functions in a help topic, e.g. elfun:
>> help elfun

 To find out about a particular function, e.g. sin:
>> help sin

 Can also choose the Help button under Resources to
bring up the Documentation page

Using Functions: Terminology
 To use a function, you call it

 To call a function, give its name followed by the argument(s) that
are passed to it in parentheses

 Many functions calculate values and return the results

 For example, to find the absolute value of -4
>> abs(-4)

ans =

4

 The name of the function is “abs”

 One argument, -4, is passed to the abs function

 The abs function finds the absolute value of -4 and returns the
result, 4

Functional form of operators
 All operators have a functional form

 For example, an expression using the addition operator
such as 2 + 5 can be written instead using the function
plus, and passing 2 and 5 as the arguments:

>> plus(2,5)

ans =

7

Constants
 In programming, variables are used for values that

could change, or are not known in advance

 Constants are used when the value is known and
cannot change

 Examples in MATLAB (these are actually functions
that return constant values)
pi 3.14159….

i, j

inf infinity

NaN stands for “not a number”; e.g. the result of 0/0

1

Random Numbers
 Several built-in functions generate random (actually,

pseudo-random) numbers

 Random number functions, or random number
generators, start with a number called the seed; this is
either a predetermined value or from the clock

 By default MATLAB uses a predetermined value so it
will always be the same

 To set the seed using the built-in clock:

rng(‘shuffle’)

Random Real Numbers
 The function rand generates uniformly distributed

random real numbers in the open interval (0,1)

 Calling it with no arguments returns one random real
number

 To generate a random real number in the open interval
(0,N):

rand * N

 randn is used to generate normally distributed
random real numbers

Random Integers
 Rounding a random real number could be used to

produce a random integer, but these integers would
not be evenly distributed in the range

 The function randi(imax) generates a random integer
in the range from 1 to imax, inclusive

 A range can also be passed:

 randi([m,n],1) generates one integer in the range from

m to n

Characters and Strings
 A character is a single character in single quotes

 All characters in the computer’s character set are put in an order
using a character encoding

 The character set includes all letters of the alphabet, digits,
punctuation marks, space, return, etc.

 Character strings are sequences of characters in quotes, e.g.
‘hello and how are you?’

 In the character encoding sequence, the letters of the alphabet
are in order, e.g. ‘a’ comes before ‘b’

 Common encoding ASCII has 128 characters, but MATLAB can
use a much larger encoding sequence

Relational Expressions
 The relational operators in MATLAB are:

> greater than
< less than
>= greater than or equals
<= less than or equals
== equality
~= inequality

 The resulting type is logical 1 for true or 0 for false
 The logical operators are:

|| or for scalars
&& and for scalars
~ not

 Also, xor function which returns logical true if only one of the
arguments is true

Truth Table
 A truth table shows how the results from the logical

operators for all combinations

 Note that the logical operators are commutative (.e.g.,
x|| y is equivalent to y || x)

Expanded Precedence Table
 The precedence table is expanded to include the

relational and logical operators:

Range and Type Casting
 Range of integer types found with intmin/intmax

 e.g. intmin(‘int8’) is -128, intmax(‘int8’) is 127

 Converting from one type to another, using any of the
type names as a function, is called casting or type
casting, e.g:

>> num = 6 + 3;

>> numi = int32(num);

>> whos

Name Size Bytes Class Attributes

num 1x1 8 double

numi 1x1 4 int32

 The class function returns the type of a variable

Characters and Encoding
 standard ASCII has 128 characters; integer equivalents are 0-127

 any number function can convert a character to its integer
equivalent

>> numequiv = double('a')

numequiv =

97

 the function char converts an integer to the character equivalent
(e.g. char(97))

 MATLAB uses an encoding that has 65535 characters; the first
128 are equivalent to ASCII

Some Functions in elfun
 Trig functions, e.g. sin, cos, tan (in radians)

 Also arcsine asin, hyperbolic sine sinh, etc.

 Functions that use degrees: sind, cosd, asind, etc.

 Rounding and remainder functions:

 fix, floor, ceil, round

 rem, mod: return remainder

 sign returns sign as -1, 0, or 1

 sqrt and nthroot functions

 deg2rad and rad2deg convert between degrees and
radians

Log Functions
 MATLAB has built-in functions to return logarithms:

 log(x) returns the natural logarithm (base e)

 log2(x) returns the base 2 logarithm

 log10(x) returns the base 10 (common) logarithm

 MATLAB also has a built-in function exp(n) which
returns the constant en

 Note: there is no built-in constant for e; use exp instead

 Also, do not confuse with exponential notation e

Beware of Common Pitfalls
 Confusing the format of an assignment statement (make

sure that the variable name is always on the left)

 Forgetting to use parentheses to pass an argument to a
function (e.g., typing “fix 2.3” instead of “fix(2.3)”)

 Confusing || and xor

 Using = instead of == for equality

 Using an expression such as “5 < x < 10” – which will always
be true, regardless of the value of the variable x (because
the expression is evaluated from left to right; 5 < x is
either true (1) or false (0); both 1 and 0 are less than 10)

Programming Style Guidelines
 Use mnemonic variable names (names that make sense; for

example, radius instead of xyz)

 Although variables named result and RESULT are different,
avoid this as it would be confusing

 Do not use names of built-in functions as variable names

 Store results in named variables (rather than using ans) if
they are to be used later

 Make sure variable names have fewer characters than
namelengthmax

 If different sets of random numbers are desired, set the
seed for the random functions using rng

Exercises
1. Generate a:

 real number in the range (0,1)

 real number in the range (0, 100)

 real number in the range (20, 35)

 integer in the inclusive range from 1 to 100

 integer in the inclusive range from 20 to 35

Exercises
2. Think about what would be produced by the following
expressions, and then type them in to verify your
answers.

 >> 3 == 5 + 2 >> 'b' < 'a' + 1

 >> 10 > 5 + 2 >> (10 > 5) + 2

 >> 'c' == 'd' - 1 && 2 < 4

 >> 'c' == 'd' - 1 || 2 > 4

 >> xor('c' == 'd' - 1, 2 > 4) >> xor('c' == 'd' - 1, 2 < 4)

 >> 10 > 5 > 2

Exercises
3. Calculate the range of integers that can be stored in
the types int16 and uint16. Use intmin and intmax to
verify your results.

4. Find the numerical equivalent of the character ‘x’.

5. Find the character equivalent of 107.

Exercises
6. Use the help function to find out what the rounding
functions fix, floor, ceil, and round do. Experiment
with them by passing different values to the functions,
including some negative, some positive, some with
fractions less than 0.5 and some greater.

Solutions
1.

 real number in the range (0,1) rand

 real number in the range (0, 100) rand*100

 real number in the range (20, 35) rand*(35-20)+20

 integer in the inclusive range from 1 to 100 randi(100)

 integer in the inclusive range from 20 to 35
randi([20, 35])

Solutions
3.

 >> 2^16 ans = 65536

 >> 2^15 ans = 32768

 >> intmin('int16’) ans = -32768

 >> intmax('int16’) ans = 32767

 >> intmin('uint16’) ans = 0

 >> intmax('uint16’) ans = 65535

Solutions
4.

 >> double('x')

ans =

120

5.

 >> char(107)

ans =

k

