

Propositional logic may be defined in a Hilbert style fashion

Propositional logic is a set H defined as smallest set X of formulas verifying the following properties: 1. if A, B, C are formulas then X contains the formulas (called axioms) P1 A \rightarrow (B \rightarrow A) P2 (A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C)) P3 ((\neg B \rightarrow ¬A) \rightarrow ((\neg B \rightarrow A) \rightarrow B)) L is closed w.r.t. the following operation

MP if $A \in X$ and $A \rightarrow B \in X$ then $B \in X$ (modus ponens)

We write $\vdash_H A$ to denote that $A \in H$

If Ω is a finite set of formulas we write $\Omega \vdash_{H} A$ to denote that $\vdash_{H} \land \Omega \rightarrow A$ If Ω is an infinite set of formulas we write $\Omega \vdash_{H} A$ to denote that there is a finite subset Ω_{\circ} of Ω s.t. $\Omega_{\circ} \vdash_{H} A$.

language of modal logic

alphabet:

(i) proposition symbols : p_0 , p_1 , p_2 , ..., (ii) connectives : \rightarrow , \perp

(iii) modal operator \Box

(iv) auxiliary symbols : (,).

 $AT = \{p_0, p_1, p_2, \dots, \} \cup \{\bot\}$

The set WFF of (modal) formulas is the smallest set X with the properties (i) $p_i \in X$ ($i \in N$), $\perp \in X$, (ii) $A, B \in X \Rightarrow (A \rightarrow B) \in X$, (iii) $A \in X \Rightarrow (\neg A) \in X$ (iv) $A \in X \Rightarrow (\Box A) \in X$ Let **Z** be a set o formula.

The normal modal logic **L**[**Z**] is defined as smallest set X of formulas verifying the following properties:

- **1.** Z⊆ X
- 2. if A, B, C are formulas then X contains the formulas (called axioms) P1 A→(B→A) P2 (A→(B→C))→((A→B)→(A→C)) P3 ((¬B→¬A)→((¬B→A)→B)) P4 \Box (A→B)→(\Box A→ \Box B)
- L is closed w.r.t. the following operation
 MP if A∈X and A→B∈X then B∈X(modus ponens)
 NEC if A∈X then □A∈X (necessitation)

We write $\vdash_{L[Z]} A$ to denote that $A \in L[Z]$

If Ω is a finite set of formulas we write $\Omega \vdash_{L[Z]} A$ to denote that $\vdash_{L[Z]} \land \Omega \rightarrow A$ If Ω is an infinite set of formulas we write $\Omega \vdash_{L[Z]} A$ to denote that there is a finite subset Ω_0 of Ω s.t. $\Omega_0 \vdash_{L[Z]} A$. $L[\varnothing]$ is called minimal normal modal logic and $L[\varnothing]$ is denoted simply by **K**

Abbreviations

The usual abbreviations of classical logic plus $\Diamond A := \neg \Box \neg A$

If $N_1,...,N_k$ are names of schemas of formula the sequence $N_1...N_k$ is the set $N_1^*\cup...\cup N_1^*$, where $N_i^* = \{A: A \text{ is an instance of the schema } N_i\}$

some schema D. $\Box A \rightarrow \Diamond A$

$$4. \Box A \rightarrow \Box \Box A$$

B. A→□◇A

some modal logic T := L[T] S4 := L[T4] S5 := L[T4B] KT := L[T] K4:= L[4]

Possible world semantics or Kripke semantics

Let Prop be the set of propositional symbols.

A **structure** $F = \langle U, R \rangle$, where U is a nonempty set and $R \subseteq UxU$ is called **frame** (\mathcal{F} is a graph).

A valuation on a frame $F = \langle U, R \rangle$ is a function V : $U \rightarrow 2^{Prop}$.

A (Kripke) model M is a frame plus a valuation V, M =(U,R,V)

Let $M = \langle U, R, V \rangle$ a model, the satisfiability relation $M \models \subseteq UxWFF$ is defined as

- 1. M ,w \models A \land B \Leftrightarrow M,w \models A AND M,w \models B
- 2. M, $w \models A \lor B \Leftrightarrow M, w \models A \cap M, w \models B$

3.
$$M,w \models \neg A \Leftrightarrow M,w \nvDash A$$
,

4. $M, w \models A \rightarrow B \Leftrightarrow (M, w \models A \Rightarrow M, w \models B),$

5.
$$M, w \models \Box A \Leftrightarrow \forall u (wRu \Rightarrow M, u \models A)$$

6. M,w ⊨ \Diamond A⇔ ∃ u (wRu AND M,u ⊨ A)

7. M ,w ⊭⊥

8. M, $w \models p$ iff $p \in V(w)$

let M be a model, $M \models A$ iff for each $u \in U$ we have $M, u \models A$

let M be a model and let Σ be a set of formulas, $M \models \Sigma$ iff for each $A \in \Sigma$ $M \models A$

 $\models A \text{ iff for each model } M \text{ we have } M \models A.$

let F be a frame, $F \models A$ iff for each valuation V, $\langle F, V \rangle \models A$

let F be a frame, $F, w \models A$ iff for each valuation V, $\langle F, V \rangle, w \models A$

let M be a model,
$$Th(M) = \{A : M \models A\}$$

let F be a, $Th(F) = \{A : F \models A\}$
 $Md(A) = \{M : M \text{ is a model}, M \models A\}$
 $Md(\Sigma) = \{M : M \text{ is a model}, M \models \Sigma\}$
 $Fr(A) = \{F : F \text{ is a frame}, F \models A\}$
 $Fr(\Sigma) = \{F : F \text{ is a model}, F \models \Sigma\}$

Theorem 1.2.2 (soundness) Let Σ be a set of formulas and let $M \in Md(\Sigma)$ ($F \in Fr(\Sigma)$) then for each theorem $A \in \mathbf{L}[\Sigma]$ we have that $M \models A$ ($F \models A$).

Modal definability

- Let us assume a modal language with a denumerable set Prop of propositional symbols.
- Let us consider a first order language *L*, with a denumerable set Π of unary predicate symbols, and a binary predicate symbol R. Let τ :Prop $\rightarrow \Pi$ a bijective map
- Let Form be the set of first order formula formulas in the language *L*.
- Given a fixed variable x, we define an injective mapping ST: $WFF \rightarrow Form$
- 1. ST(p) = P(x) for $p \in Prop$ and $P = \tau(p)$;
- 2. $ST(\neg A) = \neg ST(A)$
- 3. $ST(A \rightarrow B) = ST(A) \rightarrow ST(B)$
- 4. $ST(\Box A) = \forall y(xRy \rightarrow ST(A)[x/y])$ where y does no occur in ST(A).

Let A (Σ) be a formula (a set of formulas), we say that A (Σ) defines a first/second order property Φ in the language with (R, =), if for each F (F \in Fr(A) (F \in Fr(Σ)) \iff F $\models \Phi$)

If the set Σ defines the condition Φ then we say also that the logic L[Σ] defines Φ .

formula name	formula	first order property
D	$\Box A \to \Diamond A$	$\forall x \exists y. x R y$
$ \mathbf{T} $	$\Box A \vec{} A$	$\forall x.xRx$
4	$\Box A \rightarrow \Box \Box A$	$\forall xyz.(xRy \land yRz \rightarrow xRz)$
B	$\Diamond \Box A A$	$\forall x \forall y. (xRy \rightarrow yRx)$
G	$\Diamond \Box A \neg \Box \Diamond A$	$\forall xyz.((xRy \land xRz) \rightarrow \exists w(yRw \land zRw))$

Proposition 1.3.7 $\Box \alpha \rightarrow \Box \Box \alpha$ defines transitivity $\forall xyz.(xRy \land yRz \rightarrow xRz)$

PROOF

Proposition 1.3.7 $\Box \alpha \rightarrow \Box \Box \alpha$ defines transitivity $\forall xyz.(xRy \land yRz \rightarrow xRz)$

Proof.

- 1. $F \models \forall xyz.(xRy \land yRz \rightarrow xRz) \Rightarrow F \models \Box \alpha \rightarrow \Box \Box \alpha$. Let $F, w \models \Box \alpha$, and w', w'' s.t. wRw', w'Rw'' then by transitivity we have that wRw'' and therefore $F, w'' \models \alpha$; namely $F, w' \models \Box \alpha$ and $F, w \models \Box \Box \alpha$.
- 2. $F \models \Box \alpha \rightarrow \Box \Box \alpha \Rightarrow F \models \forall xyz.(xRy \land yRz \rightarrow xRz)$. Let us suppose that $F, w \models \Box \alpha \rightarrow \Box \Box \alpha$; we fix the following assignment $V(\alpha) = \{v | wRv\}$. We have that $F, V, w \models \Box \alpha$ and by hypothesis $F, V, w \models \Box \Box \alpha$. Now for a generic $v \in V(\alpha)$ let w'' s.t. vRw''. As $F, V, w'' \models \alpha$, we must have that R is transitive.

Proposition 1.3.8 $\Diamond \Box \alpha \rightarrow \Box \Diamond \alpha$ defines directness: $dir = \forall xyz((xRy \land xRz) \rightarrow \exists u(yRu \land zRu))$ **Proposition 1.3.8** $\Diamond \Box a \rightarrow \Box \Diamond \alpha$ defines directness: $dir = \forall xyz((xRy \land xRz) \rightarrow \exists u(yRu \land zRu))$

Proof

- 1. $F \models \forall xyz((xRy \land xRz) \rightarrow \exists u(yRu \land zRu)) \Rightarrow F \models \Diamond \Box \alpha \rightarrow \Box \Diamond \alpha$ Let $w \in W$ and $F, w \models \Diamond \Box \alpha$ then $\exists w', wRw's.t.\forall w''w'Rw'' \Rightarrow w'' \models \alpha$. As dir holds we have that $\forall vwRv \exists sw'Rs, vRs$ as $F, s \models \alpha$ and therefore $F, w \models \Box \Diamond \alpha$
- 2. $F \models \Diamond \Box \alpha \supset \Box \Diamond \alpha \Rightarrow F \models \forall xyz((xRy \land xRz) \rightarrow \exists u(yRu \land zRu))$ Let w, w', w'' s.t. wRw', wRw'' and let V the assignment s.t. $V(\alpha) = \{s : w'Rs\}$

We have that $F, w' \models \Box \alpha$ and that $F, w' \models \Diamond \Box \alpha$. As $F \models G$ we have that $F, w \models \Box \Diamond \alpha$ and therefore $\forall vwRv \Rightarrow \exists tF, t \models \alpha \Rightarrow t \in V(\alpha) \Rightarrow F \models dir$

 $Fr(\mathbf{K}) = \{ \langle U, R \rangle : R \text{ is a generic relation} \}$ $Fr(\mathbf{KD}) = \{ \langle U, R \rangle : R \text{ is total} \}$ $Fr(\mathbf{KT}) = \{ \langle U, R \rangle : R \text{ is reflexive} \}$ $Fr(\mathbf{S4}) = \{ \langle U, R \rangle : R \text{ is a preorder} \}$ $Fr(\mathbf{S5}) = \{ \langle U, R \rangle : R \text{ is an equivalence} \}$

1. Z⊆ X

2. if A, B, C are formulas then X contains the formulas (called axioms)
P1 A→(B→A)
P2 (A→(B→C))→((A→B)→(A→C))
P3 ((¬B→¬A)→((¬B→A)→B))
P4 □ (A→B)→(□A→□B)

L is closed w.r.t. the following operation
 MP if A∈X and A→B∈X then B∈X(modus ponens)
 NEC if A∈X then □A∈X (necessitation)

Given a set Z of modal fomulas the modal logic L[Z] is defined by means of the following axioms and inference rules plus a notion of derivation.

axioms

1. if A, B, C are formulas then the following are axioms

P1 $A \rightarrow (B \rightarrow A)$ P2 $(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$ P3 $((\neg B \rightarrow \neg A) \rightarrow ((\neg B \rightarrow A) \rightarrow B))$ P4 $\Box (A \rightarrow B) \rightarrow (\Box A \rightarrow \Box B)$

2. if $A \in \mathbf{Z}$ then A is an axiom

Inference rules

Derivations

A derivation is a finite sequence A_1, \ldots, A_n of formulas s.t. for each $i \in [1, n]$

A_i is an axiom; or

$$A_i = B \text{ and } \exists j, k < i \text{ s.t. } A_i = A, A_k = A \rightarrow B;$$

 $A_i = \Box A and \exists k < i s.t. A_k = A;$

We write $\vdash_{L[Z]} A$ to denote that there is a derivation A_1, \dots, A_n with $A_n = A$

The construction of the canonical model

Maximal Consistent Sets

A set Γ of WFF is **consistent** if $\Gamma \not\vdash \bot$. A set Γ of WFF is **inconsistent** if $\Gamma \vdash \bot$.

A set
$$\Gamma$$
 is maximally consistent iff
(a) Γ is consistent,
(b) $\Gamma \subseteq \Gamma'$ and Γ' consistent $\Rightarrow \Gamma = \Gamma'$.

If Γ is maximally consistent, then Γ is closed under derivability (i.e. $\Gamma \vdash \phi \Rightarrow \phi \in \Gamma$).

Theorem:

Each consistent set Γ is contained in a maximally consistent set Γ^*

1) enumerate all the formulas $\varphi_0, \varphi_1, \varphi_2,$

2) define the non decreasing sequence: $\Gamma_0 = \Gamma$ $\Gamma_{n+1} = \begin{cases} \Gamma_n \cup \{\varphi_n\} \text{ if } \Gamma_n \cup \{\varphi_n\} \text{ is consistent,} \\ \Gamma_n \text{ otherwise} \end{cases}$

3) define

$$\Gamma^* = \bigcup_{n \ge 0} \Gamma_n \ .$$

Propositional logic:

If Γ is consistent, then there exists a CANONICAL valuation such that $[\psi]$ = 1 for all $\psi\in\Gamma.$

Let L be a normal modal logic, a model M = $\langle U, R, V \rangle$ is called canonical iff

- 1. U ={w : w is maximal consistent}
- 2. $R=\{(u,v) : \{A: \Box A \in u\} \subseteq v$
- 3. $u \in V(p) \Leftrightarrow p \in u$

A logic L is called **canonical** if, taken the canonical model $\langle U, R, V \rangle$, we have $\langle U, R \rangle \in Fr(L)$.

Theorem CM Let $\langle U, R, V \rangle$ the canonical model of L $\vdash_{L} \alpha \Leftrightarrow \langle U, R, V \rangle \vDash \alpha$ A normal modal logic L is said to be **model complete** if for each formula A:

 $\vdash_{\mathsf{L}} A \Leftrightarrow \forall \mathsf{M} \in \mathsf{Md}(\mathsf{L}) \mathsf{M} \models \mathsf{A}$

Theorem

Each normal modal logic is model complete **Proof**

 (\Rightarrow)

(⇐)

 $\vdash_{L} A \Rightarrow \forall M \in Md(L)M \models A by soundness$

In order to prove

 $\forall M \in Md(L)M \models A \Rightarrow \vdash \llcorner A \text{ we use the canonical model.}$

If $\forall M \in Md(L) M \models A$ we have in particular that taken the canonical model $\langle U, R, V \rangle$ we have that $\langle U, R, V \rangle \models A$, and applying theorem CM we conclude.

A normal modal logic L(Σ) is said to be **frame complete** if for each formula A: $\vdash_{L} A \Leftrightarrow \forall F \in Fr(\Sigma) F \models A$

Theorem The logics K, KD, KT, S4, S5, are frame complete. **Proof** Let L \in {K, KD, KT, S4, S5}, it is sufficient to show that if $\langle U,R,V \rangle$ is the canonical model of L then the frame $\langle U,R \rangle \in$ Fr(L). Let Σ be a set of formulas, and let $\mathscr{C} \subseteq Fr(\Sigma)$ a set of frames; the modal logic L[Σ] is said to be \mathscr{C} -complete (complete w.r.t. the class \mathscr{C} of frames) if $A \in L(\Sigma) \Leftrightarrow \forall F \in C, F \models A$

Theorem

- The logics K (KD) is complete with respect to the class of denumerable frames with irreflexive, asymmetric and intransitive (total) accessibility relation.
- The logic S4 is complete w.r.t. the set of denumerable partial order.

Modal logic and intuitionism

Let us consider the following translation function []* from propositional formulas to modal ones. $p^* = \Box p$ (p is a propositional symbol) $[A \land B]^* = [A]^* \land [B]^*$ $[A \lor B]^* = [A]^* \lor [B]^*$ $[A \rightarrow B]^* = \Box ([A]^* \rightarrow [B]^*)$ $[\neg A]^* = \Box (\neg [A]^*)$

Lemma

Let $\langle W, R, V_i \rangle$ be an intuitionistic model and $\langle W, R, V_{S4} \rangle$ be a partial order model of S4 s.t. for each propositional symbol p, w $\Vdash_i p$ iff w $\models_{S4} \Box p$, then for each propositional formula A, w $\Vdash_i A$ iff w $\models_{S4} A^*$

Lemma

Let $M_i = \langle W, R, V_i \rangle$ be an intuitionistic model and $M_{S4} = \langle W, R, V_{S4} \rangle$ be a partial order model of S4 s.t. for each propositional symbol p, w $\Vdash_i p$ iff w $\models_{S4} \Box p$, then for each propositional formula A, $M_i \Vdash_i A$ iff $M_{S4} \models_{S4} A^*$

Theorem $\vdash_i A \Leftrightarrow \vdash_{S4} A^*$

natural deduction?

There is no general way of giving a proof theory for modal logics.

The case of S4

$C \in hp \mathcal{D} \Leftrightarrow C$ has the shape either $\Box B$ or $\neg \diamondsuit B$

failure of normalisation

failure of normalisation

The solution proposed by Prawitz

LTL: Linear Temporal Logic

each natural number identifies an temporal instant

A Linear Time Kripke model **M** (or, simply, a model) is a frame plus a valuation of propositional symbols, namely $M = \langle Nat, V: \mathbb{N} \rightarrow 2^{Prop} \rangle$

 $\sigma \text{ induces the accessibility relation} \\ \mathscr{N} \subseteq \mathbb{N} x \mathbb{N} \\ n \mathscr{N} m \Longleftrightarrow m = n + 1$

language of linear temporal logic

alphabet:

```
(i) proposition symbols : p_0, p_1, p_2, ...,
```

(ii) connectives : \rightarrow , \perp

(iii) modal operator \bigcirc , \mathscr{U} ,

```
(iv) auxiliary symbols : (,).
```

 $AT = \{p_0, p_1, p_2, \dots, \} \cup \{\bot\}$

The set WFF of (modal) formulas is the smallest set X with the properties (i) $p_i \in X$ ($i \in N$), $\perp \in X$, (ii) $A, B \in X \Rightarrow (A \rightarrow B) \in X$, (iii) $A \in X \Rightarrow (\neg A) \in X$ (iv) $A \in X \Rightarrow (\bigcirc A) \in X$ (v) $A, B \in X \Rightarrow (A \ \mathcal{U} B) \in X$,

abbreviations: $\Diamond A := (\neg \bot) \mathscr{U} A$

$$\Box \mathsf{A} := \neg \diamondsuit \neg \mathsf{A}$$

Let **M**= (**Nat**, V) a model,

the satisfiability relation $\mathbf{M} \models \subseteq \mathbb{N} \times \mathbb{W} \times \mathbb{W}$ is defined as

- 1. **M** , $n \models A \land B \Leftrightarrow M, n \models A \& M, n \models B$
- 2. M ,n \models A \lor B \Leftrightarrow M,n \models A OR M,n \models B
- 3. $M,n \models \neg A \Leftrightarrow M,n \nvDash A$,
- 4. M,n ⊨A→B⇔ (M,n ⊨A⇒ M,n ⊨B),
- 5. M,n ⊨A**%**B⇔ ∃ m(n≤m & (M,m ⊨ B & ∀j(j∈[n,m-1]⇒M,j ⊨A)))
- 6. $M,n \models \Box A \Leftrightarrow \forall m (n \le m \Rightarrow M, m \models A)$
- 7. M,n⊨◇A⇔ ∃ m (n≤m & M,m⊨A)
- 8. M,n $\models \bigcirc A \Leftrightarrow M,n+1 \models A$)
- 9. M ,n ⊭⊥
- 10.M , $n \models p \text{ iff } p \in V(n)$

M,n ⊨AℋB⇔ ∃ m≥n M,m ⊨ B & ∀j∈[n,m-1] M,j ⊨A

Sometimes in literature a model is given by $K = \langle T, s : \mathbb{N} \rightarrow T, V \rangle$

where

T is a denumerable set of temporal instants

s is a bijection and

V:T \rightarrow 2^{Prop} is a valuation

these models are completely equivalent to the models previously introduced.

Let $K = \langle T, s: \mathbb{N} \rightarrow T, V \rangle$, the satisfiability relation $K \models \subseteq TxWFF$ is defined as

 $M,s_k \models A \rightarrow B \Leftrightarrow (M,s_k \models A \Rightarrow M,s_k \models B),$

 $\mathsf{M}, \mathsf{s}_{\mathsf{n}} \vDash \mathsf{A}\mathscr{U}\mathsf{B} \Leftrightarrow \exists \mathsf{m}(\mathsf{n} \leq \mathsf{m} \And (\mathsf{M}, \mathsf{s}_{\mathsf{m}} \vDash \mathsf{B} \And \forall \mathsf{j}(\mathsf{j} \in [\mathsf{n}, \mathsf{m} \text{-} 1] \Rightarrow \mathsf{M}, \mathsf{s}_{\mathsf{j}} \vDash \mathsf{A})))$

```
M,s_n \models \bigcirc A \Leftrightarrow M,s_{n+1} \models A
```

M ,s_n ⊭⊥ M ,s_n⊨p iff p∈V(s_n)

$$\models A \Longleftrightarrow \forall M. M \models A$$

```
A0 All temporal instances of propositional classical tautologies.
A1 \circ(A\rightarrowB)\rightarrow(\circA\rightarrow\circB)
A2 \neg A \rightarrow O \neg A
A3 \Box (A \rightarrow B) \rightarrow (\Box A \rightarrow \Box B)
A4 \Box A \rightarrow A
A5 \Box A \rightarrow \Box \Box A
A6 □A→○A
A7 \Box A \rightarrow \circ \Box A
\mathsf{A8} \mathsf{A} \land \Box (\mathsf{A} \to \circ \mathsf{A}) \to \Box \mathsf{A}
           A A \rightarrow B
MP
                       Α
Gen□
                      Geno
                    \circ \mathbf{A}
```

temporal induction

$$A \land \Box (A \rightarrow \circ A) \rightarrow \Box A$$

$$0 \models A \land \Box (A \rightarrow \circ A) \rightarrow \Box A$$

$$\iff$$

$$(0 \models A \& \forall n(n \models A \Rightarrow n+1 \models A)) \Rightarrow \forall n (n \models A)$$
Let a(x) be the property x \models A
$$0 \models A \land \Box (A \rightarrow \circ A) \rightarrow \Box A$$

$$\iff$$

$$(a(0) \& \forall n(a(n) \Rightarrow a(n+1))) \Rightarrow \forall n (a(n))$$

$$\begin{array}{c} k \vDash A \land \Box (A \rightarrow \circ A) \rightarrow \Box A \\ \longleftrightarrow \\ (\alpha(k) \& \forall n \ge k(\alpha(n) \Rightarrow \alpha(n+1))) \Rightarrow \forall n \ge k (\alpha(n)) \end{array}$$

$$\vdash A \Rightarrow \vDash A$$

(A simple induction on derivations: exercise)

$$\models A \Rightarrow \vdash A$$

Difficult: the canonical kripke model is not a temporal model

INTUITIVE IDEA: TREES/GRAPHS instead of COMPUTATIONS

 $\forall \bigcirc$ =for each next time; $\exists \bigcirc$ = there exists a next time such that

 $\forall \Box =$ for each computation and for each state in it

 $\forall \diamondsuit$ = for each computation there exists a state in it such that

 $\exists \Box =$ there exists a computation such that for each state in it $\exists \diamondsuit =$ there exists a computation and a state in it such that

language of UB

alphabet:

```
(i) proposition symbols : p_0, p_1, p_2, . . . ,
```

```
(ii) connectives : \rightarrow, \perp
```

```
(iii) modal operator ∀○,∀□,∀♢
```

```
(iv) auxiliary symbols : (,).
```

 $AT = \{p_0, p_1, p_2, \dots, \} \cup \{\bot\}$

The set WFF of (modal) formulas is the smallest set X with the properties (i) $p_i \in X$ ($i \in N$), $\perp \in X$, (ii) $A, B \in X \Rightarrow (A \rightarrow B) \in X$,

```
(iii)A \in X \Rightarrow (\neg A) \in X
```

```
(iv) A \in X \Rightarrow (\forall \diamondsuit A), (\forall \Box A), (\forall \bigcirc A) \in X
```

abbreviations: $\exists \Box A := \neg \forall \diamondsuit \neg A$ $\exists \diamondsuit A := \neg \forall \Box \neg A$ $\exists \circlearrowright A := \neg \forall \Box \neg A$

an (UB-)frame is a graph ⟨S,N⟩ where N ⊆ SxS is total (∀s∃s' sNs')

An s-branch/s-computation is a sequence $b_s = (s_i)_{i < \omega} \text{ s.t. } s = s_0 \& \forall i \in \mathbb{N} s_i N s_{i+1}$ if $b_s = (s_i)_{i < \omega}$ with $b_s[k]$ we denote s_k and with $s' \in b_s$ we mean that $\exists k \text{ s.t. } s' = b_s[k]$

```
an (UB-)model is a pair \langle F, V \rangle
where F is a frame
and V:S\rightarrow 2^{Prop}
is a valuation
```

Let $M = \langle S, N, V \rangle$ a model,

the satisfiability relation $M \models \subseteq SxWFF$

is defined as

- 1. M ,s ⊭⊥
- 2. M ,s \models p iff p \in V(s)
- 3. M ,s \models A \land B \Leftrightarrow M,s \models A & M,s \models B
- 4. M ,s \models A \lor B \Leftrightarrow M,s \models A OR M,s \models B
- 5. $M,s \models \neg A \Leftrightarrow M,s \not\models A$,
- 6. $M,s \models A \rightarrow B \Leftrightarrow (M,s \models A \Rightarrow M,s \models B),$
- 7. $M_s \models \forall \Box A \Leftrightarrow \forall b_s \forall s' \in b_s M_s' \models A$
- 8. $M,s \models \forall \diamondsuit A \Leftrightarrow \forall b_s \exists s' \in b_s M, s' \models A$

9.
$$M, s \models \exists \Box A \Leftrightarrow \exists b_s \forall s' \in b_s M, s' \models A$$

10. M, $s \models \exists \Diamond A \Leftrightarrow \exists b_s \exists s' \in b_s M, s' \models A$

- 11. M, $s \models \forall \bigcirc A \Leftrightarrow \forall s' (sNs' \Rightarrow M, s' \models A)$
- 12. M, $s \models \exists \bigcirc A \Leftrightarrow \exists s' (sNs' \& M, s' \models A)$

AXIOMATIZATION (*2*-free fragment)

A0 All temporal instances of propositional classical tautologies.

- $(A1) \forall \Box (A \rightarrow B) \supset (\forall \Box A \rightarrow \forall \Box B)$
- $(A2) \forall \bigcirc (A \rightarrow B) \supset (\forall \bigcirc A \rightarrow \forall \bigcirc B)$
- $(A3) \forall \Box A \rightarrow (\forall \Box A \land \forall \bigcirc \forall \Box A)$
- $(A4) A \land \forall \Box (A \rightarrow \forall \bigcirc A) \rightarrow \forall \Box A)$
- . (E1) $\forall \Box (A \rightarrow B) \supset (\exists \Box A \rightarrow \exists \Box B)$
- . (*E2*) $\exists \Box A \rightarrow (A \land \exists \Box \exists \Box A)$
- $(E3) \forall \Box A \rightarrow \exists \Box A$
- . (E4) $A \land \forall \Box (A \rightarrow \exists \bigcirc A) \rightarrow \exists \Box A$

$$\vdash A \Rightarrow \vDash A$$

(A simple induction on derivations: exercise)

$$\models A \Rightarrow \vdash A$$

Difficult: the canonical kripke model is not an UB-model

The Logic CTL

language of CTL

 $AT = \{p_0, p_1, p_2, \dots, \} \cup \{\bot\}$

alphabet:

(i) proposition symbols : p_0 , p_1 , p_2 , ...,

(ii) connectives : \rightarrow , \perp

(iii) modal operator ∀⊖,∀𝔐, ∃𝔐

(iv) auxiliary symbols : (,).

The set WFF of (modal) formulas is the smallest set X with the properties (i) $p_i \in X$ ($i \in N$), $\perp \in X$, (ii) $A, B \in X \Rightarrow (A \rightarrow B) \in X$, (iii) $A \in X \Rightarrow (\neg A) \in X$

(iv) $A, B \in X \Rightarrow (\forall \bigcirc A), (A \forall \mathscr{U} B) \in X$

abbreviations:

∃⊖A = ¬∀⊝¬A

 $\exists \Box A = \neg \forall \Diamond \neg A \quad \forall \Box A = \neg \exists \Diamond \neg A \quad \exists \Diamond \alpha = true \exists \mathscr{U} A \qquad \forall \Diamond A = true \forall \mathscr{U} A$

NOTATION: if $b_s = (s_i)_{i < \omega}$ with $b_s[k]$ we denote s_k

 \Leftrightarrow

$$\exists b_s \exists k (M, b_s[k] \vDash A \& \forall j \in [0, k-1] b_s[j] \vDash B$$

$$M,s \models B \forall \mathcal{U} A$$

 \Leftrightarrow

 $\forall b_s \exists k \ (\ M, b_s[k] \vDash A \ \& \ \forall j \in [0, k-1] \ b_s[j] \vDash B$

in order to axiomatize CTL we add to the axioms od UB the following $\forall \Box (C \rightarrow (\neg B \land (A \rightarrow \forall \bigcirc C)) \rightarrow (C \rightarrow \neg (A \exists \mathscr{U}B))$ $\forall \Box (C \rightarrow (\neg B \land \exists \bigcirc C)) \rightarrow (C \rightarrow \neg (A \forall \mathscr{U}B))$

$$\vdash A \Rightarrow \vDash A$$

(A simple induction on derivations: exercise)

$$\models A \Rightarrow \vdash A$$

Difficult: the canonical kripke model is not CTL-model

Model Checking Given a model M and a formula A M⊨A ?

model checking is important for verification of properties of concurrent and distribute systems.

M represent the computational space and A the property to be verified

Theorem The model checking problem for CTL is in deterministic polynomial time

Theorem The model checking problem for LTL is PSPACE-complete