
Modal Logic



Propositional logic may be defined in a Hilbert style fashion

Propositional logic is a set H defined as smallest set X of formulas verifying the 
following properties:!
1. if A, B, C are formulas then X contains the formulas (called axioms)!
P1 A→(B→A) 
P2 (A→(B→C))→((A→B)→(A→C)) !
P3 ((¬B→¬A)→((¬B→A)→B))!
 L is closed w.r.t. the following operation!

MP  if A∈X and A→B∈X then B∈X(modus ponens)  !
!
We write ⊢H A to denote that A∈H!
!
If Ω is a finite set of formulas we write Ω ⊢H A to denote that ⊢H ⋀Ω → A 
If Ω is an infinite set of formulas we write Ω ⊢H A to denote that there is a finite 
subset Ω0 of Ω s.t. Ω0 ⊢HA.!
!



language of modal logic !
alphabet: !
(i) proposition symbols : p0, p1, p2, . . . , !
(ii) connectives : →,⊥!
(iii) modal operator ☐!
(iv) auxiliary symbols : ( , ).

The set WFF of (modal) formulas  is the smallest set X 
with the properties!
(i) pi ∈X (i∈N), ⊥∈X,!
(ii) A,B∈X⇒ (A→B)∈X, !
(iii)A∈X ⇒(¬A)∈X!
(iv) A∈X ⇒(☐A)∈X

AT={p0, p1, p2, . . . ,}∪{⊥}



Let Z be a set o formula.!
The normal modal logic L[Z]  is defined as smallest set X of formulas verifying the 
following properties:!
1. Z⊆ X!
2.  if A, B, C are formulas then X contains the formulas (called axioms)!

P1 A→(B→A) 
P2 (A→(B→C))→((A→B)→(A→C)) !
P3 ((¬B→¬A)→((¬B→A)→B))!
P4 ☐(A➝B)➝(☐A→☐B)!

3.  L is closed w.r.t. the following operation!
MP  if A∈X and A→B∈X then B∈X(modus ponens)  !
NEC if A∈X then ☐A∈X (necessitation)!

!
We write ⊢

L[Z] 
A to denote that A∈L[Z]!

!
If Ω is a finite set of formulas we write Ω ⊢

L[Z]  
A to denote that ⊢

L[Z]  
⋀Ω → A 

If Ω is an infinite set of formulas we write Ω ⊢
L[Z]  

 A to denote that there is a finite 
subset Ω0 of Ω s.t. Ω0 ⊢L[Z]  

A.!
!



L[∅] is called minimal normal modal logic and !
L[∅] is denoted simply by K

Abbreviations!
The usual abbreviations of classical logic plus!
♢A := ¬☐¬A

some schema !
D.☐A➝♢A 
T. ☐A→A!
4. ☐A➝☐☐A !
B. A➝☐♢A!

some modal logic!
T := L[T]!
S4 := L[T4]!
S5 := L[T4B]!
KT := L[T]!
K4:= L[4]

If N1,..,Nk are names of schemas of formula!
the sequence N1..Nk is the set !
N1*∪…∪N1*, where !
Ni* ={A: A is an instance of the schema Ni}



Possible world semantics!
or!

Kripke semantics



Let Prop be the set of propositional symbols. !
!
A structure F =⟨U,R⟩, where U is a nonempty set and R ⊆ UxU  is 
called frame (𝓕 is a graph).!
!
A valuation on a frame F=⟨U,R⟩ is a function V : U→2Prop.!
!
A (Kripke) model M is a frame plus a valuation V, M =⟨U,R,V⟩



Let M =⟨U,R,V⟩  a model, 

 the satisfiability relation M ⊨ ⊆ UxWFF 

is defined as   

1.  M ,w ⊨A∧B⇔ M,w ⊨A AND M,w ⊨B 

2.  M ,w ⊨A∨B⇔ M,w ⊨A OR M,w⊨B 

3.  M,w ⊨ ¬A ⇔ M,w ⊭ A, 

4. M,w ⊨A→B⇔ (M,w ⊨A⇒ M,w ⊨B),  

5. M,w ⊨☐A⇔  ∀ u (wRu ⇒M,u ⊨ A)   

6. M,w ⊨♢A⇔  ∃ u (wRu AND M,u ⊨ A) 

7. M ,w ⊭⊥ 

8. M ,w ⊨ p iff p∈V(w) 



The following are some modal logics currently used. To the left of the
sign = we have the historical name of the logic, to the right Lemmon’s code.

• T = KT

• S4 = KT4

• S5 = KT4B

• S4.1 = KT4M

• S4.2 =KT4G

• S4.3 = KT4H

1.2 Semantics

1.2.1 Possible world semantic

Definition 1.2.1 Let Prop be a set of propositional symbols; a structure
F =< U,R >, with U a set of worlds, R ⊆ U2 an accessibility relation, is
called frame.

A valuation on a frame F is a function and V : U → 2Prop.
A model M is a frame and a valuation, namely M =< U,R, V >; the

semantics of formulas in M is given by induction on the structure of the
formula A. With I, u |= A we mean that the formula A is true in the world
u of I.

• M,u |= A iff:

A ∈ Prop and A ∈ V (u)

A is ¬B and not M,u |= B

A is B⊃C and if M,u |= B then M,u |= C

A is ✷B and for each u′ ∈ U if uRu′ then M,u′ |= B

• let M be a model, M |= A iff for each u ∈ U we have M,u |= A

• let M be a model and let Σ be a set of formulas, M |= Σ iff for each
A ∈ Σ M |= A

• |= A iff for each model M we have M |= A.

• let F be a frame, F |= A iff for each valuation V , ⟨F, V ⟩ |= A

• let F be a frame, F,w |= A iff for each valuation V , ⟨F, V ⟩, w |= A
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• let F be a frame and let Σ be a set of formulas, F |= Σ iff for each
A ∈ Σ F |= A

• let Σ be a set of formulas, A a formula:

– Σ |=m A iff for each model M , M |= Σ ⇒ M |= A

– Σ |=f A iff for each frame F , F |= Σ ⇒ F |= A

– let M be a model, Th(M) = {A : M |= A}
– let F be a , Th(F ) = {A : F |= A}
– Md(A) = {M : M is a model,M |= A}
– Md(Σ) = {M : M is a model,M |= Σ}
– Fr(A) = {F : F is a frame, F |= A}
– Fr(Σ) = {F : F is a model, F |= Σ}

Theorem 1.2.2 (soundness) Let Σ be a set of formulas and let M ∈
Md(Σ) (F ∈ Fr(Σ)) then for each theorem A ∈L[Σ] we have that M |= A
(F |= A).

Proof. Observe that inference rules (and in particular gen) preserve truth,
and conclude.

As immediate consequence we have that models and frames are com-
pletely characterized by modal logical axioms:

Corollary 1.2.3 Md(L[Σ]) = Md(Σ) and Fr(L[Σ]) = Fr(Σ).

The intuitive idea of possible worlds semantics is that the worlds are the
universes in which formulas are evaluated and that the accessibility relation
is the way in which formulas become true.

Example 1.2.4 Let us consider the Kripke model M = ⟨W,R, V ⟩ in fig.
where W = {x, y, z, u, v}, the relation R is represents by arcs, and the as-
signment function V is given by labelling worlds with propositional symbols.

It easy to verify that, for each formula α :
x |= ✷α
but
x ̸|= ✸α

This fact tell us that the axiom schema D= ✷α⊃✸α does not hold in M.
We can prove that

y |= ✷(p∨r)
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Modal definability



First order translation!

!
Let us assume a modal language with a denumerable set Prop of 
propositional symbols.!
Let us consider a first order language L, with a denumerable set  Π 
of unary predicate symbols, and a binary predicate symbol R.!
Let τ:Prop→Π a bijective map!
Let Form be  the set of first order formula formulas  in the language 
L.!
Given a fixed variable x, we define an injective mapping !
ST:  WFF→Form!
!
1. ST(p) = P(x) for p ∈Prop and P = τ(p);!
2. ST(¬A)=¬ST(A)!
3. ST(A→B)=ST(A)→ST(B)!
4. ST(☐A) = ∀y(xRy→ST (A)[x/y]) where y does no occur in ST(A).



definability



Let A (Σ) be a formula (a set of formulas), we say that A (Σ) defines 
a first/second order property Φ in the language with (R, =), if for 
each F (F ∈ Fr(A) (F∈Fr(Σ)) ⟺F⊨ Φ)!
If the set Σ defines the condition Φ then we say also that the logic 
L[Σ] defines Φ.!

1.3.2 Interpretation on frames

The interpretation of modal formulas over models is simply extendible to
an interpretation w.r.t. frames. The basic idea is to have a second order
translation, where the second order quantification is relative to propositional
variable.

We can state the following theorem:

Theorem 1.3.4 Let α be a modal formula with propositional symbols p1, . . . pm;
F,w |= α iff F,w |= ∀P1 . . .∀PnST (α)
F |= α iff F |= ∀P1 . . .∀Pn∀x.ST (α)

The previos theorem states that modal formulas may be seen as element
of Π1

1 in the analithycal hierarchy.
The previos translation is not very informative, as it refer to propositional

symbols in the underlying modal formulas.
It is interesting the capability of modal formulas to define first/second

order condition on frames, namely first/second order formulas built over the
binary predicate symbols R and =.

Definition 1.3.5 Let A (Σ) be a formula (a set of formulas), we say that A
(Σ) defines a first/second order relation Φ on (R,=), if for each F ∈ Fr(A)
(F ∈ Fr(Σ)) F |= Φ. If Σ define the condition Φ then we say also that the
logic L[Σ] defines Φ.

Very interesting is the capability of modal logic to define first order con-
dition. To this aim we define a class of modal formulas called M1:

Definition 1.3.6 We denote with M1 the class of modal formulas α such
that:

F |= α ⇐⇒ F |= ᾱ

where ᾱ is a first order sentence on (R,=).

The following table shows some interesting member of M1.

formula name formula first order on (R,=)
D ✷A⊃✸A ∀x∃y.xRy
T ✷A⊃A ∀x.xRx
4 ✷A⊃✷✷A ∀xyz.(xRy∧yRz⊃xRz)
B ✸✷A⊃A ∀x∀y.(xRy⊃yRx)
G ✸✷A⊃✷✸A ∀xyz.((xRy∧xRz)⊃∃w(yRw∧zRw))
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Proposition 1.3.7 ✷α⊃✷✷α defines transitivity ∀xyz.(xRy∧yRz⊃xRz)

Proof.

1. F |= ∀xyz.(xRy∧yRz⊃xRz) ⇒ F |= ✷α⊃✷✷α. Let F,w |= ✷α, and
w′, w′′ s.t. wRw′, w′Rw′′ then by transitivity we have that wRw′′ and
therefore F,w′′ |= α; namely F,w′ |= ✷α and F,w |= ✷✷α.

2. F |= ✷α⊃✷✷α ⇒ F |= ∀xyz.(xRy∧yRz⊃xRz). Let us suppose that
F,w |= ✷α⊃✷✷α; we fix the following assignment V (α) = {v|wRv}.
We have that F, V, w |= ✷α and by hypothesis F, V, w |= ✷✷α. Now
for a generic v ∈ V (α) let w′′ s.t. vRw′′. As F, V, w′′ |= α, we must
have that R is transitive.

Proposition 1.3.8 ✸✷α⊃✷✸α defines directness:
dir = ∀xyz((xRy∧xRz)⊃∃u(yRu∧zRu))

Proof

1. F |= ∀xyz((xRy∧xRz)⊃∃u(yRu∧zRu)) ⇒ F |= ✸✷α⊃✷✸α
Let w ∈ W and F,w |= ✸✷α then ∃w′, wRw′s.t.∀w′′w′Rw′′ ⇒ w′′ |= α.

As dir holds we have that ∀vwRv∃sw′Rs, vRs as F, s |= α and therefore
F,w |= ✷✸α

2. F |= ✸✷α⊃✷✸α ⇒ F |= ∀xyz((xRy∧xRz)⊃∃u(yRu∧zRu))
Let w,w′, w′′ s.t. wRw′, wRw′′ and let V the assignment s.t. V (α) =
{s : w′Rs}
We have that F,w′ |= ✷α and that F,w′ |= ✸✷α. As F |= G we have
that F,w |= ✷✸α and therefore ∀vwRv ⇒ ∃tF, t |= α ⇒ t ∈ V (α) ⇒
F |= dir

By combining the capability of modal formulas to define first/second order
relation on the accessibility relation of frames we obtain the following results:
Fr(K) = {⟨U,R⟩ : R is a generic relation}
Fr(KD) = {⟨U,R⟩ : R is total}
Fr(KT) = {⟨U,R⟩ : R is reflexive}
Fr(S4) = {⟨U,R⟩ : R is a preorder}
Fr(S5) = {⟨U,R⟩ : R is an equivalence}
Fr(S4.2) = {⟨U,R⟩ : R is a direct preorder}
Some interesting property charcterize the class M1.

Theorem 1.3.9 Let α be a modal formulas without nesting modalities, then
α ∈ M1.
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for a generic v ∈ V (α) let w′′ s.t. vRw′′. As F, V, w′′ |= α, we must
have that R is transitive.

Proposition 1.3.8 ✸✷α⊃✷✸α defines directness:
dir = ∀xyz((xRy∧xRz)⊃∃u(yRu∧zRu))

Proof

1. F |= ∀xyz((xRy∧xRz)⊃∃u(yRu∧zRu)) ⇒ F |= ✸✷α⊃✷✸α
Let w ∈ W and F,w |= ✸✷α then ∃w′, wRw′s.t.∀w′′w′Rw′′ ⇒ w′′ |= α.

As dir holds we have that ∀vwRv∃sw′Rs, vRs as F, s |= α and therefore
F,w |= ✷✸α

2. F |= ✸✷α⊃✷✸α ⇒ F |= ∀xyz((xRy∧xRz)⊃∃u(yRu∧zRu))
Let w,w′, w′′ s.t. wRw′, wRw′′ and let V the assignment s.t. V (α) =
{s : w′Rs}
We have that F,w′ |= ✷α and that F,w′ |= ✸✷α. As F |= G we have
that F,w |= ✷✸α and therefore ∀vwRv ⇒ ∃tF, t |= α ⇒ t ∈ V (α) ⇒
F |= dir

By combining the capability of modal formulas to define first/second order
relation on the accessibility relation of frames we obtain the following results:
Fr(K) = {⟨U,R⟩ : R is a generic relation}
Fr(KD) = {⟨U,R⟩ : R is total}
Fr(KT) = {⟨U,R⟩ : R is reflexive}
Fr(S4) = {⟨U,R⟩ : R is a preorder}
Fr(S5) = {⟨U,R⟩ : R is an equivalence}
Fr(S4.2) = {⟨U,R⟩ : R is a direct preorder}
Some interesting property charcterize the class M1.

Theorem 1.3.9 Let α be a modal formulas without nesting modalities, then
α ∈ M1.

13



COMPLETENESS



L[Z]  is defined as smallest set X of formulas verifying the following properties:!
1. Z⊆ X!
2.  if A, B, C are formulas then X contains the formulas (called axioms)!

P1 A→(B→A) 
P2 (A→(B→C))→((A→B)→(A→C)) !
P3 ((¬B→¬A)→((¬B→A)→B))!
P4 ☐(A➝B)➝(☐A→☐B)!

3.  L is closed w.r.t. the following operation!
MP  if A∈X and A→B∈X then B∈X(modus ponens)  !
NEC if A∈X then ☐A∈X (necessitation)!

Given a set Z   of modal fomulas the modal logic L[Z] is defined by means of the following 
axioms and inference rules plus a notion of derivation.!

axioms!
1. if A, B, C are formulas then the following are axioms!
! P1 A→(B→A) 
! P2 (A→(B→C))→((A→B)→(A→C)) !
! P3 ((¬B→¬A)→((¬B→A)→B))!
! P4 ☐(A➝B)➝(☐A→☐B)!
2. if A∈Z then A is an axiom!

Inference rules!
!

                            MP   !
!
           !
                            NEC!

!
Derivations!

A derivation is a finite sequence A1, . . . , An of formulas s.t. for each i ∈ [1, n]!
Ai is an axiom; or!
Ai ≡ B and ∃j, k < i s.t. Ai ≡ A, Ak ≡ A → B;!
Ai ≡ ☐A and ∃k < i s.t. Ak ≡ A;!
!
We write ⊢L[Z] A to denote that there is a derivation A1,...,An with An ≡A

A    A→B  !
B

A      !
☐A



The construction of the canonical model



Maximal Consistent Sets
A set Γ of WFF is consistent if!

Γ⊬⊥.
A set Γ of WFF is inconsistent if!

Γ⊢⊥.

A set Γ is maximally consistent iff !
(a) Γ is consistent,!
(b) Γ ⊆Γ′ and Γ′ consistent ⇒Γ=Γ′.

If Γ is maximally consistent, then Γ is closed under 
derivability (i.e. Γ ⊢φ⇒φ∈Γ). 



Theorem:!
Each consistent set Γ is contained in a maximally 
consistent set Γ✻

   1) enumerate all the formulas 
  φ0, φ1, φ2, .....

2) define the non decreasing sequence: 
Γ0=Γ 
         ⎧Γn ∪ {φn} if Γn ∪ {φn} is consistent, !Γn+1=           ⎨ !                   ⎩Γn otherwise 

3) define 

Γ✻ =∪Γn .
n≥0



Propositional logic:!
If Γ is consistent, then there exists a CANONICAL  valuation such that [ψ] = 1 for all 
ψ ∈ Γ.!

Let L be a normal modal logic, a model M =⟨U,R,V⟩ is called 
canonical iff!
1. U ={w : w is maximal consistent}!
2. R={(u,v) : {A:☐A∈u}⊆v!
3. u∈V(p) ⇔ p∈u



A logic L is called canonical if, taken the canonical model ⟨U,R,V⟩, 
we have ⟨U,R⟩ ∈ Fr(L).

Theorem CM!
Let ⟨U,R,V⟩ the canonical model of L!
 ⊢L α ⇔ ⟨U,R,V⟩ ⊨ α



A normal modal logic L is said to be model complete if for each 
formula A:!

⊢L A⇔∀M∈Md(L) M⊨A

Theorem !
 Each normal modal logic is model complete!
Proof !

(⇒)!
⊢L A⇒∀M∈Md(L)M⊨A by soundness!

(⇐)!
In order to prove!
∀M∈Md(L)M⊨A ⇒ L A we use the canonical model. !
If ∀M ∈ Md(L) M⊨A we have in particular that taken the canonical 
model ⟨U, R, V⟩ we have that ⟨U, R, V⟩ ⊨ A, and applying theorem 
CM we conclude.



A normal modal logic L(Σ) is said to be frame complete if for each 
formula A:!
⊢L A⇔∀F∈Fr(Σ) F⊨A

Theorem The logics K, KD, KT, S4, S5, are  frame complete.!
Proof!
Let L∈{K, KD, KT, S4, S5}, it is sufficient to show that if ⟨U,R,V⟩ is 
the canonical model of L then  the frame ⟨U,R⟩∈Fr(L).



Let Σ be a set of formulas, and let C ⊆ Fr(Σ) a set of frames; the 
modal logic L[Σ] is said to be C-complete  (complete w.r.t. the 
class C of frames) if!
A∈L(Σ)⇔∀F∈C,F⊨A

Theorem !
1. The logics K (KD) is complete with respect to the class of 

denumerable frames with irreflexive, asymmetric and 
intransitive (total) accessibility relation.!

2. The logic S4 is complete w.r.t. the set of denumerable partial 
order.!

!



Modal logic and intuitionism

Let us consider the following translation function []* from 
propositional formulas to modal ones.!
p* =☐p (p is a propositional symbol) 
[A∧B]* = [A]*∧[B]*!
[A∨B]*= [A]*∨[B]*!
[A→B]* = ☐([A]*→[B]*) !
[¬A]* =☐(¬[A]*)!



Lemma !
Let ⟨W,R,Vi⟩ be an intuitionistic model and ⟨W,R,VS4⟩ be a partial 
order model of S4 s.t. for each propositional symbol p, !
w ⊩i p iff w ⊨S4 ☐p, !
then for each propositional formula A, w ⊩i A iff w ⊨s4 A*!

Lemma !
Let Mi=⟨W,R,Vi⟩ be an intuitionistic model and MS4=⟨W,R,VS4⟩ be a 
partial order model of S4 s.t. for each propositional symbol p, !
w ⊩i p iff w ⊨S4 ☐p, !
then for each propositional formula A, Mi⊩i A iff MS4 ⊨s4 A*!

Theorem !
⊢i A ⇔ S4 A*



natural deduction?



The case of S4

There is no general way of giving a 
proof theory for modal logics.



7.3 r is ✸ and r′ is ✷. We have:

π1 ⊢ ✸Γ1, A,✸A,Γ2
✸

π ⊢ ✸Γ1,✸A,Γ2

and
π′
1 ⊢ ✸Γ1,¬A

✷
π′ ⊢ ✸Γ1,¬✸A,Γ2

Proof ϖ is

π1 ⊢ ✸Γ1, A,✸A,Γ2 π′A ⊢ ✸Γ1, A,¬✸A,Γ2
=================================== IH

⊢ ✸Γ1, A,Γ2 π′Γ2

1 ⊢ ✸Γ1,¬A,Γ2
cut

ϖ ⊢ ✸Γ1,Γ2

7.4 r is ✷ and r′ is ✸. Dual of case 7.3.

The previous lemma establishes in the standard way the cut-elimination the-
orem:

Theorem 2.2.7 Given any proof of ⊢ Γ, it is possible to construct a cut-free
proof of the same sequent.

2.3 Natural deduction systems

We focus our attemption on the Prawitz [45] treatment of S4 ( and we sketch
S5).

2.3.1 Natural deduction system for S4

The natural deduction systems S4-NK, S4-NJ, are obtained by adding the
following rules for modalities to NK and NJ .

Rules for S4

1. ✷ introduction
✷Γ,¬✸Γ′

...
A

✷A
✷I
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2. ✷ elimination
Γ
...

✷A

A
✷E

3. ✸ introduction
Γ
...
A

✸A
✸I

4. ✸ elimination
Γ1
...

✸B

✷Γ,¬✸Γ′, [[B]]
...
C

C
✸E

with C is of the kind ✷F,¬✸F .

2.3.2 Normalization

In order to simplify the treatment we limit ourselves to the fragment {✷,⊃,∧}.
Let us consider the following proof.

✷A∧✷B
∧E

✷B

✷A∧✷B
∧E

✷A

✷A
✷E

A

✷B
✷E

B
∧I

A∧B
✷I

✷(A∧B)
⊃I

✷B⊃✷(A∧B)
⊃I

✷A⊃(✷B⊃✷(A∧B))
⊃E

✷B⊃✷(A∧B)
⊃E

✷(A∧B)

We can observe that this proof is not in normal form. Now note that
we cannot perform a β reduction (with type ✷B⊃✷(A∧B)) as the resulting
figure is not correct:
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∧E

✷B

✷A∧✷B
∧E

✷A

✷A
✷E

A

✷B
✷E

B
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A∧B
✷I

✷(A∧B)
⊃I

✷B⊃✷(A∧B)
⊃I

✷A⊃(✷B⊃✷(A∧B))
⊃E

✷B⊃✷(A∧B)
⊃E

✷(A∧B)

We can observe that this proof is not in normal form. Now note that
we cannot perform a β reduction (with type ✷B⊃✷(A∧B)) as the resulting
figure is not correct:
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✷A∧✷B
∧E

✷A

✷A
✷E

A

✷B
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B
∧I

A∧B
✷I

✷(A∧B)
⊃I

✷B⊃✷(A∧B)
⊃I

✷A⊃(✷B⊃✷(A∧B))
⊃E

✷B⊃✷(A∧B)
⊃E

✷(A∧B)

We can observe that this proof is not in normal form. Now note that
we cannot perform a β reduction (with type ✷B⊃✷(A∧B)) as the resulting
figure is not correct:
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7.3 r is ✸ and r′ is ✷. We have:

π1 ⊢ ✸Γ1, A,✸A,Γ2
✸

π ⊢ ✸Γ1,✸A,Γ2

and
π′
1 ⊢ ✸Γ1,¬A

✷
π′ ⊢ ✸Γ1,¬✸A,Γ2

Proof ϖ is

π1 ⊢ ✸Γ1, A,✸A,Γ2 π′A ⊢ ✸Γ1, A,¬✸A,Γ2
=================================== IH

⊢ ✸Γ1, A,Γ2 π′Γ2

1 ⊢ ✸Γ1,¬A,Γ2
cut

ϖ ⊢ ✸Γ1,Γ2

7.4 r is ✷ and r′ is ✸. Dual of case 7.3.

The previous lemma establishes in the standard way the cut-elimination the-
orem:

Theorem 2.2.7 Given any proof of ⊢ Γ, it is possible to construct a cut-free
proof of the same sequent.

2.3 Natural deduction systems

We focus our attemption on the Prawitz [45] treatment of S4 ( and we sketch
S5).

2.3.1 Natural deduction system for S4

The natural deduction systems S4-NK, S4-NJ, are obtained by adding the
following rules for modalities to NK and NJ .

Rules for S4

1. ✷ introduction
✷Γ,¬✸Γ′

...
A

✷A
✷I
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D

C ∈hp D ⇔ C has the shape either ☐B or ¬♢B  



failure of normalisation 

✷A∧✷B
∧E

✷A
✷E

A

✷B
✷E

B
∧I

A∧B
✷I

✷(A∧B)
⊃I

✷B⊃✷(A∧B)

In fact the last application of ✷I violate the constraint previously im-
posed.

In order to have a normalizing system we recall a different natural deduc-
tion system for S4, namely the “third version” of the calculus discussed in
Prawitz’ classical monograph [?, Chapter VI, pag. 79]. As for the rules for
✷, the elimination is the same as ours with the omission of levels, while the
introduction rule is rather elaborate, in order to ensure normalization and
the subformula property. An application of ✷ must have the form:

D1 Dn

[✷τ1 . . . ✷τn]

D
σ
✷σ

✷I

where ✷τ1, . . . ,✷τn are all the open assumptions of D, they are essentially
modal and no open assumption in the deductions Di (of conclusion ✷τi) is
bound in D. In other words, an application of ✷I is obtained by taking a
deduction

✷τ1 . . . ✷τn

D
σ

and plugging into these assumptions arbitrary derivations with the right
conclusion. Rule ✷ is far from being “natural”: it allows normalization, but
at the price of a globally stated constraint on its application.

2.3.3 Addendum: rules for S5

1. ✷ introduction
✷Γ,¬✸Γ′,¬✷Γ′′,¬✸Γ′′′

...
A

✷A
✷I
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2. ✷ elimination
Γ
...

✷A

A
✷E

3. ✸ introduction
Γ
...
A

✸A
✸I

4. ✸ elimination
Γ1
...

✸B

✷Γ,¬✸Γ′, [[B]]
...
C

C
✸E

with C is of the kind ✷F,¬✸F .

2.3.2 Normalization

In order to simplify the treatment we limit ourselves to the fragment {✷,⊃,∧}.
Let us consider the following proof.

✷A∧✷B
∧E

✷B

✷A∧✷B
∧E

✷A

✷A
✷E

A

✷B
✷E

B
∧I

A∧B
✷I

✷(A∧B)
⊃I

✷B⊃✷(A∧B)
⊃I

✷A⊃(✷B⊃✷(A∧B))
⊃E

✷B⊃✷(A∧B)
⊃E

✷(A∧B)

We can observe that this proof is not in normal form. Now note that
we cannot perform a β reduction (with type ✷B⊃✷(A∧B)) as the resulting
figure is not correct:
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failure of normalisation 
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In fact the last application of ✷I violate the constraint previously im-
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In order to have a normalizing system we recall a different natural deduc-
tion system for S4, namely the “third version” of the calculus discussed in
Prawitz’ classical monograph [?, Chapter VI, pag. 79]. As for the rules for
✷, the elimination is the same as ours with the omission of levels, while the
introduction rule is rather elaborate, in order to ensure normalization and
the subformula property. An application of ✷ must have the form:

D1 Dn

[✷τ1 . . . ✷τn]

D
σ
✷σ

✷I

where ✷τ1, . . . ,✷τn are all the open assumptions of D, they are essentially
modal and no open assumption in the deductions Di (of conclusion ✷τi) is
bound in D. In other words, an application of ✷I is obtained by taking a
deduction

✷τ1 . . . ✷τn

D
σ

and plugging into these assumptions arbitrary derivations with the right
conclusion. Rule ✷ is far from being “natural”: it allows normalization, but
at the price of a globally stated constraint on its application.

2.3.3 Addendum: rules for S5

1. ✷ introduction
✷Γ,¬✸Γ′,¬✷Γ′′,¬✸Γ′′′

...
A

✷A
✷I
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2. ✷ elimination
Γ
...

✷A

A
✷E

3. ✸ introduction
Γ
...
A

✸A
✸I

4. ✸ elimination
Γ1
...

✸B

✷Γ,¬✸Γ′, [[B]]
...
C

C
✸E

with C is of the kind ✷F,¬✸F .

2.3.2 Normalization

In order to simplify the treatment we limit ourselves to the fragment {✷,⊃,∧}.
Let us consider the following proof.

✷A∧✷B
∧E

✷B

✷A∧✷B
∧E

✷A

✷A
✷E

A

✷B
✷E

B
∧I

A∧B
✷I

✷(A∧B)
⊃I
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⊃I

✷A⊃(✷B⊃✷(A∧B))
⊃E

✷B⊃✷(A∧B)
⊃E

✷(A∧B)

We can observe that this proof is not in normal form. Now note that
we cannot perform a β reduction (with type ✷B⊃✷(A∧B)) as the resulting
figure is not correct:
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✷A∧✷B
∧E

✷A
✷E

A

✷B
✷E

B
∧I

A∧B
✷I

✷(A∧B)
⊃I

✷B⊃✷(A∧B)

In fact the last application of ✷I violate the constraint previously im-
posed.

In order to have a normalizing system we recall a different natural deduc-
tion system for S4, namely the “third version” of the calculus discussed in
Prawitz’ classical monograph [?, Chapter VI, pag. 79]. As for the rules for
✷, the elimination is the same as ours with the omission of levels, while the
introduction rule is rather elaborate, in order to ensure normalization and
the subformula property. An application of ✷ must have the form:

D1 Dn

[✷τ1 . . . ✷τn]

D
σ
✷σ

✷I

where ✷τ1, . . . ,✷τn are all the open assumptions of D, they are essentially
modal and no open assumption in the deductions Di (of conclusion ✷τi) is
bound in D. In other words, an application of ✷I is obtained by taking a
deduction

✷τ1 . . . ✷τn

D
σ

and plugging into these assumptions arbitrary derivations with the right
conclusion. Rule ✷ is far from being “natural”: it allows normalization, but
at the price of a globally stated constraint on its application.

2.3.3 Addendum: rules for S5

1. ✷ introduction
✷Γ,¬✸Γ′,¬✷Γ′′,¬✸Γ′′′

...
A

✷A
✷I
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The solution proposed by Prawitz



TEMPORAL LOGIC



LTL: Linear Temporal Logic



timeline/computation/fullpath!
Kripke frame is Nat=⟨ℕ, σ, ≤⟩!

(as usual σ(n) will be written as n+1)

!
!
!
!
!
each natural number identifies an temporal instant 

k0 21 3
s=

A  Linear Time Kripke model M (or, simply, a model) is a 
frame plus a valuation of propositional symbols, namely!
M= ⟨Nat, V:ℕ→2Prop⟩

σ induces the accessibility relation!
𝓝⊆ ℕxℕ!
n𝓝m ⟺ m=n+1



language of linear temporal logic !
alphabet: !
(i) proposition symbols : p0, p1, p2, . . . , !
(ii) connectives : →,⊥!
(iii) modal operator ◯, 𝓤, !

(iv) auxiliary symbols : ( , ).

The set WFF of (modal) formulas  is the smallest set X 
with the properties!
(i) pi ∈X (i∈N), ⊥∈X,!
(ii) A,B∈X⇒ (A→B)∈X, !
(iii)A∈X ⇒(¬A)∈X!
(iv) A∈X ⇒(◯A)∈X!
(v) A,B∈X⇒ (A 𝓤 B)∈X,

AT={p0, p1, p2, . . . ,}∪{⊥}

abbreviations:!
♢A := (¬⊥)𝓤A!

☐A := ¬♢¬A



Let M= ⟨Nat, V⟩  a model, 

 the satisfiability relation M ⊨ ⊆ ℕxWFF 

is defined as   

1.  M ,n ⊨A∧B⇔ M,n ⊨A & M,n ⊨B 

2.  M ,n ⊨A∨B⇔ M,n ⊨A OR M,n⊨B 

3.  M,n ⊨ ¬A ⇔ M,n ⊭ A, 

4. M,n ⊨A→B⇔ (M,n ⊨A⇒ M,n ⊨B),  

5. M,n ⊨A𝓤B⇔ ∃ m(n≤m & (M,m ⊨ B & ∀j(j∈[n,m-1]⇒M,j ⊨A))) 

6. M,n ⊨☐A⇔  ∀ m (n≤m ⇒M,m ⊨ A)   

7. M,n ⊨♢A⇔  ∃ m (n≤m & M,m ⊨ A) 

8. M,n ⊨◯A⇔  M,n+1 ⊨ A) 

9. M ,n ⊭⊥ 

10.M ,n ⊨ p iff p∈V(n) 



M,n ⊨A𝓤B⇔ ∃ m≥n M,m ⊨ B & ∀j∈[n,m-1] M,j ⊨A

!
!
!
!
!

m-1n m

A B



Sometimes in literature a model is given by!
K=⟨T,s:ℕ→T, V⟩!
where!
T is a denumerable set of temporal instants!
s is a bijection and !
V:T→2Prop is a valuation!
these models are completely equivalent to the models previously 
introduced.!
!
!
!
!
!
!



!
M,sk ⊨A→B⇔ (M,sk ⊨A⇒ M,sk ⊨B), !

M,sn ⊨A𝓤B⇔ ∃ m(n≤m & (M,sm ⊨ B & ∀j(j∈[n,m-1]⇒M,sj ⊨A)))!

M,sn ⊨◯A⇔  M,sn+1 ⊨ A)!
M ,sn ⊭⊥!
M ,sn ⊨ p iff p∈V(sn) 

Let K=⟨T,s:ℕ→T, V⟩,!
 the satisfiability relation K ⊨ ⊆ TxWFF!
is defined as 



M ⊨ A ⟺ ∀n M,n⊨A

⊨ A ⟺ ∀M.  M ⊨A



∀◯IOMATIZATION (𝓤-free fr∀☐ment)A0 All temporal instances of propositional classical tautologies. !
A1 ◦(A→B)→(◦A→◦B) 
A2 ¬◦A→◦¬A 
A3 ☐(A→B)→(☐A→☐B)!
A4 ☐A → A 
A5 ☐A → ☐☐A 
A6 ☐A→◦A 
A7 ☐A → ◦☐A 
A8 A∧☐(A→◦A)→☐A!
!          A   A→B!MP  !               B!
!                   A!Gen☐  !                  ☐A!!
                  A!Gen◦!                ◦A!
!
!



A∧☐(A→◦A)→☐A
temporal induction

0⊨ A∧☐(A→◦A)→☐A!
⟺!

(0⊨A & ∀n(n⊨A ⇒ n+1⊨A)) ⇒∀n (n⊨A)!
Let α(x) be the property x⊨A!

0⊨ A∧☐(A→◦A)→☐A!
⟺!

(α(0) & ∀n(α(n) ⇒ α(n+1))) ⇒∀n (α(n))

k⊨ A∧☐(A→◦A)→☐A!
⟺!

(α(k) & ∀n≥k(α(n) ⇒ α(n+1))) ⇒∀n≥k (α(n))



SOUNDNESS

⊢A  ⇒  ⊨A

COMPLETENESS

⊨A  ⇒  ⊢A

(A simple induction on derivations: exercise)

Difficult: the canonical kripke model is not a temporal model



BRANCHING TIME



INTUITIVE IDEA: TREES/GRAPHS instead of COMPUTATIONS

s

q
p

p

p

p,q

p,q

p,q

p,q

qr

r,q

s

s,q

∀◯ =for each next time; ∃◯= there exists a next time such that!
∀☐= for each computation and for each state in it!
∀♢= for each computation there exists a state in it such that !
∃☐= there exists a computation such that for each state in it!
∃♢=there exists a computation and a state in it such that 

s⊨ ∀◯ q      !
s⊨ ∃◯ s ∧∃◯p!
s⊨ ∃☐ p!
s⊨ ∃☐ q!
s⊨ ∃♢ r!
s⊨ ∃♢ (s ∧¬q)!



language of UB !
alphabet: !
(i) proposition symbols : p0, p1, p2, . . . , !
(ii) connectives : →,⊥!
(iii) modal operator ∀◯,∀☐,∀♢ !
(iv) auxiliary symbols : ( , ).

The set WFF of (modal) formulas  is the smallest 
set X with the properties!
(i) pi ∈X (i∈N), ⊥∈X,!
(ii) A,B∈X⇒ (A→B)∈X, !
(iii)A∈X ⇒(¬A)∈X!
(iv) A∈X ⇒(∀♢ A), (∀☐ A), (∀◯ A) ∈X

AT={p0, p1, p2, . . . ,}∪{⊥}

abbreviations:!
∃☐ A := ¬∀♢¬ A!
∃♢ A := ¬∀☐¬ A!
∃◯ A := ¬∀◯¬ A



Semantics
an (UB-)frame is a graph!

⟨S,N⟩!
where N ⊆ SxS is total (∀s∃s’ sNs’)

An s-branch/s-computation is a sequence !
bs=(si)i<ω s.t. s=s0 & ∀ i∈ℕ siNsi+1!

if bs=(si)i<ω with bs[k] we denote sk and with!
s’∈ bs we mean that ∃k s.t. s’= bs[k]!

an (UB-)model is a pair!
⟨F,V⟩!

where F is a frame !
and V:S→2Prop!
is a valuation



Let M= ⟨S,N,V⟩  a model, 

 the satisfiability relation M ⊨ ⊆ SxWFF 

is defined as   

1. M ,s ⊭⊥ 

2. M ,s ⊨ p iff p∈V(s) 

3. M ,s ⊨A∧B⇔ M,s ⊨A & M,s ⊨B 

4. M ,s ⊨A∨B⇔ M,s ⊨A OR M,s⊨B 

5. M,s ⊨ ¬A ⇔ M,s ⊭ A, 

6. M,s ⊨A→B⇔ (M,s ⊨A⇒ M,s ⊨B),  

7. M,s ⊨∀☐ A⇔  ∀bs∀s’∈bs M,s’ ⊨ A 

8. M,s ⊨∀♢ A⇔  ∀bs∃s’∈bs M,s’ ⊨ A 

9. M,s ⊨∃☐ A⇔  ∃bs∀s’∈bs M,s’ ⊨ A 

10. M,s ⊨∃♢ A⇔  ∃bs∃s’∈bs M,s’ ⊨ A 

11. M,s ⊨∀◯ A⇔  ∀s’ (sNs’⇒ M,s’ ⊨ A) 

12. M,s ⊨∃◯ A⇔  ∃s’ (sNs’ & M,s’ ⊨ A)



AXIOMATIZATION (𝓤-free fragment)

A0 All temporal instances of propositional classical tautologies. !
! .! (A1)  ∀☐(A→B)⊃(∀☐A→∀☐B) !
! .! (A2)  ∀◯(A→B)⊃(∀◯A→∀◯B) !
! .! (A3)  ∀☐A → (∀☐A ∧ ∀◯∀☐ A) !
! .! (A4)  A ∧ ∀☐(A→∀◯A)→∀☐A) !
! .! (E1)  ∀☐(A→B)⊃(∃☐A→∃☐B)!
! .! (E2)  ∃☐ A → (A ∧ ∃◯∃☐A) !
! .! (E3)  ∀☐A → ∃☐A !
! .! (E4)  A ∧ ∀☐(A →∃◯A) → ∃☐A!
!
          A   A→B!
MP  !
               B!
!
                   A!
Gen  !
               ∀☐A!



SOUNDNESS

⊢A  ⇒  ⊨A

COMPLETENESS

⊨A  ⇒  ⊢A

(A simple induction on derivations: exercise)

Difficult: the canonical kripke model is not an UB-model



The Logic CTL

CTL= UB+𝓤ntil



language of CTL !
alphabet: !
(i) proposition symbols : p0, p1, p2, . . . , !
(ii) connectives : →,⊥!
(iii) modal operator ∀◯,∀𝓤, ∃𝓤 !

(iv) auxiliary symbols : ( , ).

The set WFF of (modal) formulas  is the smallest 
set X with the properties!
(i) pi ∈X (i∈N), ⊥∈X,!
(ii) A,B∈X⇒ (A→B)∈X, !
(iii)A∈X ⇒(¬A)∈X!

(iv) A,B∈X ⇒(∀◯ A), (A ∀𝓤 B) ∈X

AT={p0, p1, p2, . . . ,}∪{⊥}

abbreviations:!
∃◯A = ¬∀◯¬A         !
∃☐A=¬∀♢¬A   ∀☐A=¬∃♢¬A   ∃♢α ≡ true ∃𝓤 A       ∀♢A ≡ true ∀𝓤 A!



M,s ⊨B ∃𝓤 A!
⇔  !
∃bs ∃k ( M,bs[k] ⊨ A & ∀j∈[0,k-1] bs[j] ⊨ B !

NOTATION: if bs=(si)i<ω with bs[k] we denote sk

M,s ⊨B ∀𝓤 A!
⇔  !
∀bs ∃k ( M,bs[k] ⊨ A & ∀j∈[0,k-1] bs[j] ⊨ B !



in order to axiomatize CTL we add to the axioms od UB 
the following!
∀☐(C→(¬B∧(A→∀◯C))→(C→¬(A∃𝓤B))!

∀☐(C→(¬B∧∃◯C))→(C→¬(A∀𝓤B))!
!
!



SOUNDNESS

⊢A  ⇒  ⊨A

COMPLETENESS

⊨A  ⇒  ⊢A

(A simple induction on derivations: exercise)

Difficult: the canonical kripke model is not  CTL-model



Model Checking!
Given a model M and a formula A!

M⊨A ?

model checking is important for verification of properties of!
concurrent and distribute systems.!
M represent the computational space and A the property to be 
verified!

Theorem!
The model checking problem for CTL is in deterministic 
polynomial time!

Theorem !
The model checking problem for LTL!
is PSPACE-complete!


