
Chapter 3

Introduction to MATLAB Programming

Linguaggio Programmazione Matlab-Simulink (2017/2018)

Algorithms
 An algorithm is the sequence of steps needed to

solve a problem

 Top-down design approach to programming: break
a solution into steps, then further refine each one

 Generic algorithm for many programs:
1. Get the input

2. Calculate result(s)

3. Display the result(s)

 A modular program would consist of functions that
implement each step

Scripts
 Scripts are files in MATLAB that contain a sequence of

MATLAB instructions, implementing an algorithm

 Scripts are interpreted, and are stored in code files
(files with the extension .m)

 To create a script, click on “New Script” under the
HOME tab; this opens the Editor

 Once a script has been created and saved, it is
executed by entering its name at the prompt

 the type command can be used to display a script in
the Command Window

Documentation
 Scripts should always be documented using

comments

 Comments are used to describe what the script does,
and how it accomplishes its task

 Comments are ignored by MATLAB

 Comments are anything from a % to the end of that
line; longer comment blocks are contained in between
%{ and %}

 In particular, the first comment line in a script is called
the “H1 line”; it is what is displayed with help

Input
 The input function does two things: prompts the

user, and reads in a value

 General form for reading in a number:
variablename = input(‘prompt string’)

 General form for reading a character or string:
variablename = input(‘prompt string’, ‘s’)

 Must have separate input functions for every value to
be read in

Output
 There are two basic output functions:

 disp, which is a quick way to display things
 fprintf, which allows formatting

 The fprintf function uses format strings which include place
holders; these have conversion characters:

%d integers
%f floats (real numbers)
%c single characters
%s strings

 Use %#x where # is an integer and x is the conversion character
to specify the field width of #

 %#.#x specifies a field width and the number of decimal places
 %.#x specifies just the number of decimal places (or characters

in a string); the field width will be expanded as necessary

Formatting Output
 Other formatting:

 \n newline character

 \t tab character

 left justify with ‘-’ e.g. %-5d

 to print one slash: \\

 to print one single quote: ‘‘ (two single quotes)

 Printing vectors and matrices: usually easier with disp

Examples of fprintf
 Expressions after the format string fill in for the place

holders, in sequence
>> fprintf('The numbers are %4d and %.1f\n', 3, 24.59)

The numbers are 3 and 24.6

 It is not the case that every fprintf statement prints a
separate line; lines are controlled by printing \n; e.g.
from a script:

fprintf('Hello and')

fprintf(' how \n\n are you?\n')

 would print:
Hello and how

are you?

>>

Scripts with I/O
 Although input and output functions are valid in the

Command Window, they make most sense in scripts (and/or
functions)

 General outline of a script with I/O:

1. Prompt the user for the input (suppress the output with ;)

2. Calculate values based on the input (suppress the output)

3. Print everything in a formatted way using fprintf (Normally, print
both the input and the calculated values)

 Use semicolons throughout so that you control exactly what
the execution of the script looks like

Script with I/O Example
 The target heart rate (THR) for a relatively active

person is given by

THR = (220-A) * 0.6 where A is the person’s age in years

 We want a script that will prompt for the age, then
calculate and print the THR. Executing the script
would look like this:
>> thrscript

Please enter your age in years: 33

For a person 33 years old,

the target heart rate is 112.2.

>>

Example Solution

% Calculates a person's target heart rate

age = input('Please enter your age in years: ');

thr = (220-age) * 0.6;

fprintf('For a person %d years old,\n', age)

fprintf('the target heart rate is %.1f.\n', thr)

thrscript.m

Note that the output is suppressed from both assignment statements. The
format of the output is controlled by the fprintf statements.

Simple Plots
 Simple plots of data points can be created using plot

 To start, create variables to store the data (can store one or more point
but must be the same length); vectors named x and y would be
common – or, if x is to be 1,2,3,etc. it can be omitted

plot(x,y) or just plot(y)

 The default is that the individual points are plotted with straight line
segments between them, but other options can be specified in an
additional argument which is a string

 options can include color (e.g. ‘b’ for blue, ‘g’ for greeen, ‘k’ for
black, ‘r’ for red, etc.)

 can include plot symbols or markers (e.g. ‘o’ for circle, ‘+’, ‘*’)

 can also include line types (e.g. ‘--’ for dashed)

 For example, plot(x,y, ‘g*--’)

Labeling the Plot
 By default, there are no labels on the axes or title on the plot

 Pass the desired strings to these functions:
 xlabel(‘string’)

 ylabel(‘string’)

 title(‘string’)

 The axes are created by default by using the minimum and
maximum values in the x and y data vectors. To specify different
ranges for the axes, use the axis function:
 axis([xmin xmax ymin ymax])

Other Plot Functions
 clf clears the figure window

 figure creates a new figure window (can # e.g.
figure(2))

 hold is a toggle; keeps the current graph in the figure
window

 legend displays strings in a legend

 grid displays grid lines

 bar bar chart

 Note: make sure to use enough points to get a
“smooth” graph

File I/O: load and save
 There are 3 modes or operations on files:

 read from

 write to (assumes from the beginning)

 append to (writing to, but starting at the end)

 There are simple file I/O commands for saving a
matrix to a file and also reading from a file into a
matrix: save and load

 If what is desired is to read or write something other
than a matrix, lower level file I/O functions must be
used (covered in Chapter 9)

load and save
 To read from a file into a matrix variable:

load filename.ext

 Note: this will create a matrix variable named “filename” (same as the name
of the file but not including the extension on the file name)

 This can only be used if the file has the same number of values on every line
in the file; every line is read into a row in the matrix variable

 To write the contents of a matrix variable to a file:
save filename matrixvariablename –ascii

 To append the contents of a matrix variable to an existing file:
save filename matrixvariablename –ascii -append

Example using load and plot

 A file ‘objweights.dat’ stores weights of some objects
all in one line, e.g. 33.5 34.42 35.9 35.1 34.99 34

 We want a script that will read from this file, round the
weights, and plot the rounded weights with red *’s:

1 2 3 4 5 6
34

34.5

35

35.5

36

Object #

W
e
ig

h
t

Practice Plot

Example Solution

load objweights.dat

y = round(objweights);

x = 1:length(y); % Not necessary

plot(x,y, 'r*')

xlabel('Object #')

ylabel('Weight')

title('Practice Plot')

Note that load creates a row vector variable named objweights

User-Defined Functions
 User-Defined Functions are functions that you write

 There are several kinds; for now we will focus on the
kind of function that calculates and returns one value

 You write what is called the function definition (which
is saved in a code file with .m extension)

 Then, using the function works just like using a built-
in function: you call it by giving the function name
and passing argument(s) to it in parentheses; that
sends control to the function which uses the
argument(s) to calculate the result – which is then
returned

General Form of Function Definition
 The function definition would be in a file fnname.m:

function outarg = fnname(input arguments)

% Block comment

Statements here; eventually:

outarg = some value;

end

 The definition includes:

 the function header (the first line)

 the function body (everything else)

Function header
 The header of the function includes several things:

function outarg = fnname(input arguments)

 The header always starts with the reserved word
“function”

 Next is the name of an output argument, followed by
the assignment operator

 The function name “fnname” should be the same as
the name of the code file in which this is stored

 The input arguments correspond one-to-one with the
values that are passed to the function when called

Function Example
 For example, a function that calculates and returns the area of a circle

 There would be one input argument: the radius

 There would be one output argument: the area

 In a code file called calcarea.m:

function area = calcarea(rad)

% This function calculates the area of a circle

area = pi * rad * rad;

end

 Function name same as the code file name

 Putting a value in the output argument is how the function returns the value;
in this case, with an assignment statement (Note: suppress the output)

 The names of the input and output arguments follow the same rules as
variables, and should be mnemonic

Calling the Function
 This function could be called in several ways:

 >> calcarea(4)

 This would store the result in the default variable ans

 >> myarea = calcarea(9)

 This would store the result in the variable myarea

 A variable with the same name as the output argument could
also be used

 >> disp(calcarea(5))

 This would display the result, but it would not be stored for
later use

Passing arrays to functions
 Because the * operator was used instead of .*,

area = pi * rad * rad;

arrays could not be passed to this function as it is

 To fix that, change to the array multiplication operator
.*

function area = calcarea(rad)

% This function calculates the area of a circle

area = pi * rad .* rad;

end

 Now a vector of radii could be passed to the input
argument rad

Notes
 You can pass multiple input arguments to a function

 Variables that are used within a function (for example,
for intermediate calculations) are called local variables

MATLAB Programs
 Note: a function that returns a value does NOT

normally also print the value

 A function can be called from a script

 This combination of a script (stored in a code file) and
the function(s) (also stored in code files) that it calls is
a program

General Form of Simple Program

 Get input

 Call fn to calculate
result

 Print result

function out = fn(in)

out = value based on in;

end

script.m

fn.m

Example Program
 The volume of a hollow sphere is given by

4/3 Π (Ro
3 – Ri

3) where Ro is the outer radius and Ri is the
inner radius

 We want a script that will prompt the user for the radii,
call a function that will calculate the volume, and print
the result.

 Also, we will write the function!

Example Solution
% This script calculates the volume of a hollow sphere

inner = input('Enter the inner radius: ');
outer = input('Enter the outer radius: ');

volume = vol_hol_sphere(inner, outer);

fprintf('The volume is %.2f\n', volume)

function hollvol = vol_hol_sphere(inner, outer)

% Calculates the volume of a hollow sphere

hollvol = 4/3 * pi * (outer^3 - inner^3);

end

vol_hol_sphere.m

Introduction to scope
 The scope of variables is where they are valid

 The Command Window uses a workspace called the
base workspace

 Scripts also use the base workspace

 This means that variables created in the Command
Window can be used in a script and vice versa (this is a
bad idea, however)

 Functions have their own workspaces – so local
variables in functions, input arguments, and output
arguments only exist while the function is executing

Commands and Functions
 Commands (such as format, type, load, save) are

shortcut versions of function calls

 The command form can be used if all of the arguments
that are passed to the function are strings, and the
function is not returning any values.

 So,
fnname string

 and
fnname(‘string’)

 are equivalent

Common Pitfalls
 Spelling a variable name different ways in different

places in a script or function.

 Forgetting to add the second ‘s’ argument to the input
function when character input is desired.

 Not using the correct conversion character when
printing.

 Confusing fprintf and disp. Remember that only
fprintf can format.

 Not realizing that load will create a variable with the
same name as the file.

Programming Style Guidelines
 Use comments to document scripts and functions

 Use mnemonic identifier names (names that make sense, e.g. radius
instead of xyz) for variable names and for file names

 Put a newline character at the end of every string printed by fprintf so
that the next output or the prompt appears on the line below.

 Put informative labels on the x and y axes and a title on all plots.

 Keep functions short – typically no longer than one page in length.

 Suppress the output from all assignment statements in functions and
scripts.

 Functions that return a value do not normally print the value; it should
simply be returned by the function.

 Use the array operators .*, ./, .\, and .^ in functions so that the input
arguments can be arrays and not just scalars.

Exercises
1. Create a script that would prompt the user for a length,
and then ‘f ’ for feet or ‘m’ for meters, and store both
inputs in variables. For example, when executed it
would look like this (assuming the user enters 12.3 and
then m):

Enter the length: 12.3

Is that f(eet)or m(eters)?: m

Exercises
2. Write a script to prompt the user separately for a
character and a number, and print the character in a
field width of 3 and the number left justified in a field
width of 8 with 3 decimal places. Test this by entering
numbers with varying widths.

3. Write a script that plots exp(x) and log(x) for values
of x ranging from 0 to 3.5.

Exercises
4. Write a function calcrectarea that will receive the length
and width of a rectangle in meters as input arguments, and
will return the area of the rectangle. For example, the
function could be called as shown, in which the result is
stored in a variable and then the amount of material required
is printed, rounded up to the nearest square inch.

>> ra = calcrectarea(3.1, 4.4)

ra =

13.6400

>> fprintf('We need %d square meters \n', ceil(ra))

We need 14 square meters.

