
The UPPAAL modeling and
verification environment

University of Verona

Dep. Computer Science

Italy

Dott. Luigi Di Guglielmo

Prof. Tiziano Villa

Outline

• Introduction

• Timed Automata in Uppaal

• Understanding Time

• Query Language in Uppaal

• Overview of the Uppaal toolkit

• Example

• Conclusion

24/01/2011 Systems 2

Introduction

• Uppaal is a toolbox for modeling, simulating and
verifying real-time systems

• It is jointly developed by Uppsala University (Sweden)
and Aalborg University (Denmark)

• The tool is designed for real-time systems that can be
modeled as networks of timed automata

• 3 components:
– System editor: graphical user interface to build a system
– Simulation: step by step movement through system
– Verification: model checker evaluates questions in

temporal logic

24/01/2011 Systems 3

Timed Automata
• A timed automaton is a finite

state machine extended with
clock variables
– Locations

• Invariants

– Edges
• Guards
• Resets
• Synchronization labels

– Clocks
• Variables evaluate real numbers

24/01/2011 Systems 4

loc1
x <= 5

loc2
y <=10

x <= 5 && y > 3

x:=0s

Timed Automata in Uppaal (I)

24/01/2011 Systems 5

a) Lamp b) User

Timed Automata in Uppaal (II)

• Templates
– Used to define automata
– Characterized by a set of parameters

• Constants
– Declared as const type name = value;

• Bounded integer variables
– Declared as int [min,max] name;

• Boolean variables
– Declared as bool name;

• Clock variables
– Declared as clock name;

24/01/2011 Systems 6

Timed Automata in Uppaal (III)
• Normal locations

– Time can pass until the invariant is unsatisfied
• non-determinism: invariants and guards on outgoing edges may not be

disjoint

– When the invariant is unsatisfied the location must be exited

• Urgent locations
– Time cannot pass (must leave it immediately)
– Semantically equivalent to adding an extra clock x that is reset on

all incoming edges into the location and label the latter with the
invariant x <= 0

• Committed locations
– A committed location is an urgent location and one of its active

edges must be taken as first (meaningful for a composition of
automata)

24/01/2011 Systems 7

Timed Automata in Uppaal (IV)

• More on committed locations

– A state is committed if any of the locations in the
state is committed

– A committed state cannot delay and the next
transition must involve an outgoing edge of at
least one of the committed locations

24/01/2011 Systems 8

Normal Locations Example

24/01/2011 Systems 9

Urgent Locations Example

24/01/2011 Systems 10

Committed Location Example

24/01/2011 Systems 11

Synchronization Semantics
in Timed Automata

• Semantics:

– Transitions with the same
synchronization channel are
activated simultaneously

• Guards must be true

• The event a is exchanged
between automata

• Resets are executed

24/01/2011 Systems 12

n

m

x < 3

a!

x := 0

o

p

y > 5

a?

y := 0

Synchronization in Uppaal (I)
• Binary channels

– Declared as chan c

– An edge labeled with c! synchronizes with another labeled c?

• Broadcast channels
– Declared as broadcast chan c

– An edge labeled with c! synchronizes with an arbitrary number of
receivers c?

• Urgent channels
– Declared with the keyword urgent
– Delays are not admitted in the current location if a synchronization on

an urgent channel is enabled
– Caveat

• Leave location non-deterministically
• Guards on the edges labeled with urgent channels are not allowed

24/01/2011 Systems 13

Binary Channel Example

24/01/2011 Systems 14

Broadcast Channel Example

24/01/2011 Systems 15

Urgent Channel example

24/01/2011 Systems 16

Expressions in Uppaal (I)

• Expressions range over clocks and integer variables
• Guard

– Boolean expression
– Clocks are compared only to integer expressions

• Synchronization
– A synchronization label is either of the form expression! or

expression?
– In this case the expression must evaluate to a channel

• Assignment
– Expressions on clocks and variables
– Clocks are assigned with integer valuated expression

• Invariant
– Expression on clocks and variables of the form x < e or x<= e

24/01/2011 Systems 17

Understanding Time (I)

• Uppaal uses a continuous time model

• Let’s consider the following example

– x is a clock

– x := 0 means “the clock is reset”

24/01/2011 Systems 18

x:= 0

Understanding Time (I)

• The transition can be taken after 2 seconds

24/01/2011 Systems 19

x:= 0

Understanding Time (II)

• The transition can be taken after 2 seconds

• The transition must be taken within 3 seconds
24/01/2011 Systems 20

x:= 0

x<=3

Understanding Time (III)

• The transition can be taken between 2 and 3 seconds

• When x > 3 let time pass, no transition can be taken

24/01/2011 Systems 21

x:= 0

MODELING PATTERNS

24/01/2011 Systems 22

Atomicity (I)

• Some times it is necessary
to model atomic behaviors

• How to model atomicity in
Uppaal?

– Committed locations

• When a committed location is
entered the execution flow
must continue through such a
location

24/01/2011 Systems 23

Synchronous Value Passing: one-way (II)

• c is a binary channel
• var is a shared variable (i.e., global)
• in and out are local variables
• Resets

– The resets of the sender is
executed before the
resets of the receiver

– Given a list of reset
statements, these are
executed sequentially

24/01/2011 Systems 24

Synchronous Value Passing: two-way (III)

• c is a binary channel

• var is a shared variable
(i.e., global)

• in and out are local
variables

24/01/2011 Systems 25

Urgent Edges (IV)

• Uppaal provides
– Urgent locations

– Urgent channels

• How to model urgent edges?
– go is declared as an urgent

channel

– Adding an automaton with one
location with a self-loop
labeled with the urgent
channel go

24/01/2011 Systems 26

Model Checking

24/01/2011 Systems 27

Timed Automata A =║Ai

Specification F

Yes!

No!

Debug information

A satisfies F?

The Query Language

• The main purpose of a model checker is verify the
model w.r.t. a requirement specification

• Uppaal uses a simplified version of CTL for defining the
specifications

• The query language consists of
– State formulae

• Describe individual states

– Path formulae
• Quantify over paths of the model

– Reachability
– Safety
– Liveness

24/01/2011 Systems 28

State Formulae

• A state formula is an expression that can be
evaluated for a single state

• where
– x is a clock or a discrete variable

– n is an integer

24/01/2011 Systems 29

SF ::= Proc.loc | deadlock |

x == n | x<=n | x < n | x > n | x >= n |

SF and SF | SF or SF |

SF imply SF | not SF

Path Formulae (I)

24/01/2011 Systems 30

A[](ψ -> A<>φ)

Path Formulae (II)

• Reachability properties
– Reachability properties ask whether a given state formula ϕ possibly

can be satisfied by any reachable state
– E.g.:

E<> ϕ

• Safety properties
– Safety properties are on the form: “something bad will never happen”
– E.g.:

A[] ϕ , E[] ϕ

• Liveness properties
– Liveness properties are on the form: “something will eventually

happen”
– E.g.:

A<> ϕ , ϕ --> ψ

24/01/2011 Systems 31

Queries Examples (I)

• A deadlock never occurs

– A[] not deadlock

• An automaton A1 remains into a state q for at
least 10 seconds

– E<> A1.q and x > 10

• An automaton A2 may never enter a state q

– E[] not A2.q

24/01/2011 Systems 32

Queries Examples (II)

• Nothing bad can happen
– A[] φ

• Infinitely often φ (i.e., it is repeatedly satisfied)
– A[]A<> φ

• Always φ is possible
– A[]E<> φ

• There exists a state from which φ always holds
– E<>A[] φ

24/01/2011 Systems 33

Overview of the Uppaal toolkit (I)

24/01/2011 Systems 34

Overview of the Uppaal toolkit (II)

24/01/2011 Systems 35

Overview of the Uppaal toolkit (III)

24/01/2011 Systems 36

The Vikings Example (I)

• 4 Vikings cross the bridge in the middle of the night
– Every Viking takes a different time to cross the bridge (i.e., one

Viking can be faster than another)

• The bridge can carry only 2 Vikings at the same time
• Vikings need a torch to cross and they have only one
• Can the Vikings get safe within 60 minutes?

24/01/2011 Systems 37

The Vikings Example: the Torch model

• L represents the side the torch is on:
– If L == 0 then the torch is on this side of the bridge

– If L == 1 then the torch is beyond the bridge

24/01/2011 Systems 38

The Vikings Example: the Viking model

• cost int delay; represents the time
required by the Viking to pass the bridge

• clock y; is an internal clock of the automaton

24/01/2011 Systems 39

The Vikings Example: the system model

• Global variables:
– Declarations
chan take, release; // Take and release torch
int[0,1] L; // The side the torch is on
clock time; // Global time

• System variables:
– System declarations
Viking1 = Soldier(fastest);
Viking2 = Soldier(fast);
Viking3 = Soldier(slow);
Viking4 = Soldier(slowest);

system Viking1, Viking2, Viking3, Viking4,
Torch;

24/01/2011 Systems 40

The Vikings Example: Exercises

• Which is the minimal time required to let
every Viking cross the bridge?

– Use the verification functionalities of Uppaal

• Change the example:

– Adding new Vikings

– Adding a torch

– Allowing 3 Vikings to bring the torch

24/01/2011 Systems 41

EXERCISES

24/01/2011 Systems 42

Example: the Vending Machine

• coin and cof are synchronization channels
• Person

– Puts a coin into the machine (coin!) and waits for the coffee (cof?)

• Machine
– Accepts the coin (coin?) and, within 3 seconds, prepares the coffee (cof!),

otherwise enters an error state

24/01/2011 Systems 43

1

2

43

coin?

x=3x<3

cof!

1

2

3

cof?

coin!

Machine Person

The Vending Machine (I)

• Modeling a vending machine
– A bottle of coke costs 5 coins
– The user inserts coins (CoinIn) and then presses the

“RequestCan” button or “Cancel”
– If “Cancel” is pushed the machine returns the inserted

coins (CoinOut)
– If “RequestCan” is pushed and the credit is correct, the

machine returns the bottle and the change (if necessary)
– The machine requires between 3 to 5 seconds for issuing a

bottle
– The user cannot insert more than 10 coins without pushing

a button

24/01/2011 Systems 44

The Vending Machine (II)

• Define the automata “Machine” and “User” according
to the previous specifications

• Check that:
– The system does not allow deadlocks
– If the credit is correct, the machine releases a bottle of

coke within 5 seconds after the user pushes the
“RequestCan” button

– If the User pushes “Cancel”, the machine returns the coins
(if any)

• Hint
– Start with a simple model in which a bottle costs 1 coin.

Then continue with the complex model

24/01/2011 Systems 45

