Electronic
Systems

The UPPAAL modeling and
verification environment

Dott. Luigi Di Guglielmo University of Verona

Dep. Computer Science

Prof. Tiziano Villa
Italy

Outline

e |Introduction

e Timed Automata in Uppaal

e Understanding Time

e Query Language in Uppaal

e Overview of the Uppaal toolkit
e Example

e Conclusion

24/01/2011 Systems

Introduction

e Uppaal is a toolbox for modeling, simulating and
verifying real-time systems

e |tisjointly developed by Uppsala University (Sweden)
and Aalborg University (Denmark)

e The tool is designed for real-time systems that can be
modeled as networks of timed automata

e 3 components:
— System editor: graphical user interface to build a system
— Simulation: step by step movement through system

— Verification: model checker evaluates questions in
temporal logic

24/01/2011 Systems 3

Timed Automata

e Atimed automaton is a finite
state machine extended with
clock variables

— Locations
X<=58&&y>3 e |nvariants
=0 — Edges

e Guards

e Resets
e Synchronization labels

— Clocks

e Variables evaluate real numbers

24/01/2011 Systems 4

Timed Automata in Uppaal (I)

press?
off y:=0 low y<5 bright
O y>=5 press? O press!
?
\ press: press?
a) Lamp b) User

24/01/2011 Systems)

Timed Automata in Uppaal (lI)

e Templates
— Used to define automata
— Characterized by a set of parameters

e (Constants
— Declared as const type name = value;

e Bounded integer variables
— Declared as int [min,max] name;

e Boolean variables
— Declared as bool name;

e Clock variables
— Declared as clock name;

24/01/2011 Systems

Timed Automata in Uppaal (lI1)

e Normal locations

— Time can pass until the invariant is unsatisfied
e non-determinism: invariants and guards on outgoing edges may not be

disjoint
— When the invariant is unsatisfied the location must be exited
e Urgent locations
— Time cannot pass (must leave it immediately)

— Semantically equivalent to adding an extra clock x that is reset on
all incoming edges into the location and label the latter with the
invariant x <= 0

e Committed locations

— A committed location is an urgent location and one of its active
edges must be taken as first (meaningful for a composition of
automata)

24/01/2011 Systems 7

Timed Automata in Uppaal (IV)

e More on committed locations

— A state is committed if any of the locations in the
state is committed

— A committed state cannot delay and the next
transition must involve an outgoing edge of at
least one of the committed locations

24/01/2011 Systems 8

Normal Locations Example

receiveri

sender

start end

s27

loc3

24/01/2011 Systems 9

Urgent Locations Example

s1!

start end

s27?

loc3

24/01/2011 Systems 10

Committed Location Example

receiver

start

s1!

s27?

end

24/01/2011

loc3

Systems

11

(@so=

Synchronization Semantics
in Timed Automata

e Semantics:
— Transitions with the same @ @
synchronization channel are <a e
. . y
activated simultaneously al a?
e Guards must be true x:=0 y =0

e The event a is exchanged @ @

between automata

e Resets are executed

24/01/2011 Systems 12

24/01/2011

Synchronization in Uppaal (1)

Binary channels

— Declared as chan c¢
— An edge labeled with ¢! synchronizes with another labeled ¢?

Broadcast channels
— Declared as broadcast chan c
— An edge labeled with ¢! synchronizes with an arbitrary number of
receivers c?
Urgent channels
— Declared with the keyword urgent
— Delays are not admitted in the current location if a synchronization on
an urgent channel is enabled

— Caveat
e Leave location non-deterministically
e Guards on the edges labeled with urgent channels are not allowed

Systems 13

Binary Channel Example

Sender Sender
end end
start g! 6&1[” t g!
Receiver1 Receiver1
end end
start start /_)_O
Receiver2 Receiver2
end end
start start _., /_)_.

©75_-r

24/01/2011

Systems

14

Send Send
end
start S| enc E%F t N
R 1 R 1
end end
Stal’t 5’? Stal’t Sf;. 1/9'.
R 2 R 2
end end
start _, /_)O start - /9-.

24/01/2011 Systems 15

Urgent Channel example

Sender Sender

loc2 loc2

Receiver1 Receiver1
end end
start S? start .

24/01/2011

24/01/2011

Expressions in Uppaal (1)

Expressions range over clocks and integer variables

Guard

— Boolean expression

— Clocks are compared only to integer expressions
Synchronization

— A synchronization label is either of the form expression! or
expression?

— In this case the expression must evaluate to a channel
Assignment

— Expressions on clocks and variables

— Clocks are assigned with integer valuated expression

Invariant
— Expression on clocks and variables of the form x< e or x<=e

Systems 17

Understanding Time (I)

e Uppaal uses a continuous time model
e Let’s consider the following example

loop —

—x := 0 means “the clock is reset”

— x is a clock

24/01/2011 Systems 18

Understanding Time (I)

clock x

toop /|, 2
Q) | x=0

2 4 6 8 ime"

e The transition can be taken after 2 seconds

24/01/2011 Systems 19

Understanding Time (I1)

=
2
Q
Q
~
<

v

2 4 6 8 "time"

loop e
@ X:=0
X<=3

e The transition can be taken after 2 seconds

e The transition must be taken within 3 seconds

24/01/2011 Systems 20

Understanding Time (l1l)

<
2
Q
Qo
~
Q

l“ x>=2 && X<=3
) =0

e The transition can be taken between 2 and 3 seconds
e When x > 3 lettime pass, no transition can be taken

6 8 "time"’

24/01/2011 Systems 21

MODELING PATTERNS

24/01/2011 Systems 22

Atomicity (1)

e Some times it is necessary
to model atomic behaviors oY

e How to model atomicity in .. loc2
Uppaal?

— Committed locations <1

e When a committed location is
entered the execution flow
must continue through such a
location

24/01/2011 Systems 23

Synchronous Value Passing: one-way (ll)

e cis a binary channel

e var is a shared variable (i.e., global)
e in and out are local variables

e Resets

— The resets of the sender is
executed before the
resets of the receiver

— Given a list of reset
statements, these are
executed sequentially

24/01/2011 Systems

O

c!
var .= out

O

In ;= var,
var ;=0

24

Synchronous Value Passing: two-way (lI1)

e cis abinary channel

e var is a shared variable
(i.e., global)

e in and out are local
variables

24/01/2011 Systems

O

c!
var = out

c?
In ;= var
/
©
d!
var = out

25

Urgent Edges (V)

e Uppaal provides
— Urgent locations
— Urgent channels O

* How to model urgent edges?

— go is declared as an urgent g0?
channel

— Adding an automaton with one ;
location with a self-loop O
labeled with the urgent
channel go

24/01/2011 Systems 26

Model Checking

Timed Automata A = ||A, Yes!
/, A satisfies F?
Specification F No!

Debug information

24/01/2011 Systems 27

The Query Language

e The main purpose of a model checker is verify the
model w.r.t. a requirement specification

e Uppaal uses a simplified version of CTL for defining the
specifications

e The query language consists of
— State formulae
e Describe individual states

— Path formulae

e Quantify over paths of the model
— Reachability
— Safety
— Liveness

24/01/2011 Systems 28

State Formulae

e A state formula is an expression that can be
evaluated for a single state

SF ;= Proc.loc | deadlock |
X == n |x<=n |x < n|x >n|x > n
SF and SF | SF or SF |
SF imply SF | not SF
e wWhere
— x is a clock or a discrete variable

— n is an integer

24/01/2011 Systems PAY)

Path Formulae (I)

-
All o Y oans @
ALY -> A<>g) (|\

<\3—'@ /)/
D) C‘

o/@“ /@h

24/01/2011 Systems 30

Path Formulae (lIl)

e Reachability properties

— Reachability properties ask whether a given state formula ¢ possibly
can be satisfied by any reachable state

- E.g.:
E<>
e Safety properties
— Safety properties are on the form: “something bad will never happen”
- E.g.:
Alle, E[l o
e Liveness properties
— Liveness properties are on the form: “something will eventually

24/01/2011 Systems 31

Queries Examples ()

e A deadlock never occurs
— A[] not deadlock

e An automaton A1 remains into a state g for at
least 10 seconds

— E<> Al.gand x> 10

e An automaton A2 may never enter a state g
— E[] not A2.q

24/01/2011 Systems 32

Queries Examples (lI)

e Nothing bad can happen
- Allo

e Infinitely often (i.e., it is repeatedly satisfied)
— A[]JA<> @

e Always is possible
— A[]JE<> @

e There exists a state from which ¢ always holds
— E<>A[] @

24/01/2011 Systems

33

Overview of the Uppaal toolkit (I)

File Edit View Tools Options Help

Bla @ alala[B@ - e

|_' Editor | Simulator | Verifier |

| Drag out : Name: [Template | Parameters:
3 Project

[peclarations
o S Template

D System declarations

24/01/2011 Systems

34

Overview of the Uppaal toolkit (Il)

i

Bia|®

e - — . - B .
File Edit View Tools Options Help

NENLIC TR

| Editor | Simulator | Verifier |

Drag out

4
|

Enabled Transitions

Process [
— |~]
| Next Reset

Simulation Trace
(starp)
Trace File:
| Replay
| Open] Save Auto
\’_/}
Slow Fast

24/01/2011

'ic']Tp

Systems

Overview of the Uppaal toolkit (Il

File Edit View Tools Options Help

|Bla® B @~ o

| Editor | Simulator | Verifier

Overview

o

| Chek

Insert

|
i Remove
|

Comments

Query

Comment

Lt
Status

Established connection to server al herkules.ituu.se on port 2350.
(Academicd UPPAAL version 4.0.7 (rev. 4140), November 2008 -- server.
Disconnected.

Established connection to server at herkules.ituu.se on port 2350.

(Academic) UPPAAL version 4.0.7 (rev. 4140), November 2008 -- server.

24/01/2011

g 441] % e 2k BAt N
| PR FTR SR

e 4 Vikings cross the bridge in the middle of the night

— Every Viking takes a different time to cross the bridge (i.e., one
Viking can be faster than another)

e The bridge can carry only 2 Vikings at the same time
e Vikings need a torch to cross and they have only one
e (Can the Vikings get safe within 60 minutes?

24/01/2011 Systems 37

The Vikings Example: the Torch model

release? : release?

one

e | represents the side the torch is on:
— If L== 0 then the torch is on this side of the bridge
— If L==1 then the torch is beyond the bridge

24/01/2011 Systems 38

The Vikings Example: the Viking model

unsafe

O L==0 y=20 q
&
Q take !
release! y >= delay
release!
y >= delay
|
<:> take ! <:>
y=0 L==1

safe

« cost int delay; represents the time
required by the Viking to pass the bridge

« clock v; isaninternal clock of the automaton

24/01/2011 Systems 39

The Vikings Example: the system model

e Global variables:
— Declarations

chan take, release; // Take and release torch
int[0,1] L; // The side the torch is on
clock time; // Global time

e System variables:
— System declarations

Vikingl = Soldier (fastest);
Viking2 = Soldier (fast);
Viking3 = Soldier (slow);
Viking4 = Soldier (slowest);

system Vikingl, Viking2, Viking3, Viking4,
Torch;

24/01/2011 Systems 40

The Vikings Example: Exercises

e Which is the minimal time required to let
every Viking cross the bridge?

— Use the verification functionalities of Uppaal
e Change the example:

— Adding new Vikings

— Adding a torch

— Allowing 3 Vikings to bring the torch

24/01/2011 Systems 41

EXERCISES

24/01/2011 Systems 42

Example: the Vending Machine

Machine A Person
coin!
cof?
e coin and cof are synchronization channels
e Person
— Puts a coin into the machine (coin!) and waits for the coffee (cof?)
e Machine

— Accepts the coin (coin?) and, within 3 seconds, prepares the coffee (cof!),
otherwise enters an error state

24/01/2011 Systems 43

The Vending Machine (l)

e Modeling a vending machine
— A bottle of coke costs 5 coins

— The user inserts coins (Coinln) and then presses the
“RequestCan” button or “Cancel”

— If “Cancel” is pushed the machine returns the inserted
coins (CoinOut)

— If “RequestCan” is pushed and the credit is correct, the
machine returns the bottle and the change (if necessary)

— The machine requires between 3 to 5 seconds for issuing a
bottle

— The user cannot insert more than 10 coins without pushing
a button

24/01/2011 Systems 44

The Vending Machine (lI)

e Define the automata “Machine” and “User” according
to the previous specifications

e Check that:

— The system does not allow deadlocks

— If the credit is correct, the machine releases a bottle of
coke within 5 seconds after the user pushes the
“RequestCan” button

— |If the User pushes “Cance
(if any)

e Hint

— Start with a simple model in which a bottle costs 1 coin.
Then continue with the complex model

I”

, the machine returns the coins

24/01/2011 Systems 45

