Front End: Syntax Analysis

The Role of the Parser

source

—
program

Lexical
Analyzer

token

get next

token

Parser

Symbol
Table

parse

tree

Rest of
Front End

intermediate

T
representation

Figure 4.1: Position of parser in compiler model

The Role of the Parser

e Construct a parse tree
@ Report and recover from errors

@ Collect information into symbol tables

Types of Parsers

@ There are three general types of parsers for grammars:

» Universal
» Top-down
» Bottom-up

@ In compilers, the methods commonly used are either top-down
or bottom-up.
@ One input symbol at a time, from left to right.

o Efficiency is achieved by restricting to particular grammars:
LL (manually) or LR (automated tools).

Grammars for expressions
@ Universal methods are suitable for general grammars, e.g.
E - E+E|ExE|(E)|id
(no associativity, no precedence captured)
@ Bottom-up methods: LR grammars, e.g.
E - E+T|T
T — TxF|F
F — (E)]|id
(associativity and precedence captured)
@ Top-down methods: LL grammars, e.g.

E — TE

E' — +TE'|e
T = FT'

T — *FT'|e
F — (E)|id

Context-free Grammars

A Context-free grammar (or grammar) systematically describes
the syntax of programming language constructs.

erpression — erpression + term
erpresston — expresston — term
erpression —+ term
term — term * factor
term — term / foctor
term — factor
factor — (expression)
factor — id

Figure 4.2: Grammar for simple arithmetic expressions

Terminal symbols: id 4+ - * / () Non-terminal: expression, term,
factor. Start symbol: expression

CFG: Formal Definition

G=(T,N,P,S)

@ T is a finite set of terminals

@ N is a finite set of non-terminals

@ P is a finite subset of production rules of the form
» A- ajan...awith Ae N, a; e TUN

@ S is the start symbol
»SeN

Derivations

Using notational conventions the grammar in Fig.4.2 becomes

E —- E+T|T
T — TxF|F
F — (E)|id

A derivation of a string of terminals in this grammar is a proof that
the string is an expression.
Leftmost derivation: always choose the leftmost nonterminal

E="E+T="id+T="id+F="id+id
Rightmost derivation: always choose the righttmost nonterminal

E=""E+T=""E+F ="" E+id ="" T+id =" F+id =" id+id

Parse Trees

A parse tree is a graphical representation of a derivation: an
interior node represents the head of a production; its children are
labelled by the symbols in the body.

E — E+E|ExE| —E|(E)|id

/\
I\
/I\
\ \

id id

Figure 4.3: Parse tree for —(id + id)

Example

E=—-E= —(E)
B
= E
N
(
E <+

(E+E)=—(d+E)=
= I =
N
. / \ X
/\\
/\\

id

/

/

id

—(id + id)

\
/\\

\
/\\
/\\

id

Figure 4.4: Sequence of parse trees for derivation (1.8)

(4.8)

Ambiguity

A grammar that produces more than one parse tree for some
sentence is called ambiguous.

B E
PN RN
Y -) K K * I
PN N
id E * I B - I id
| | | |
id id id id
(a) (b}

Figure 4.5: Two parse trees for id+id#id

Problems: (1) Ambiguity can make parsing difficult; (2) Underlying
structure is ill-defined.

Language Generated by a Grammar

A grammar G generates a language L if we can show that:

o Every string generated by G is in L, and
@ Every string in L can be generated by G.

Example: Show that the grammar
S—=(S5)S] ¢

generates all strings of balanced parentheses and only such strings.

Grammars vs Regular Expressions

Every regular language is a context-free language but non
vice-versa.
Example: The language generated by the regular expression

(alb)*abb

is equivalent to the grammar

Ao — aAo | bAy | aA;
A1 — bA;

Ay — bAs

A3 — ¢

NFA-based Construction

From the NFA for the regular expression,
@ For each state i of the NFA, create a nonterminal A;
@ Add production A; — aA; for each transition from j to j on a
o If /i is accepting then add A; — ¢

@ If i is the starting state, make A; the start symbol of the
grammar.

Grammar with no Corresponding Regular Expression

The language
L={a"b" | n>1}
can be described by a grammar but not by a regular expression.

Why?

path labeled a’ *

/

()
path labeled a' \\/— path labeled &’ —
(o) [T —— 4——@\3\1\

R

[80— cee /
. N

Figure 4.6: DFA D accepting both a’b* and a’/b'.

Non-Context-Free Grammars

Grammars alone can be not sufficient to specify some
programming language construct.
This happens for constructs that are context-dependent.
The language

Ly = {wew | w in (alb)*}

is non-context-free. Ly abstracts the requirements that
identifiers are defined before their use (as in C and Java).
L, ={a"p"c"d" | n>0,m >0}

is non-context-free. L, abstracts the requirements that the
number of formal parameters in a function declaration is the same
as the number of actual parameters in a use of the function.

Common Grammars Problems (CGP)

A grammar may have some ‘bad’ styles or ambiguity. Some CGP
are:

@ Ambiguity
@ Left-recursion
@ Left factors

We need to transform a grammar G; into a grammar Gy with no
CGP and such that G; and G; are equivalent, i.e. they define the
same language.

Eliminating Ambiguity
Consider the grammar:
stmt — if expr then stmt
| if expr then stmt else stmt

| other

The sentence
if E1 then if E2 then S1 else S2

is ambiguous (cf. Figure 4.9).

stmt — matched_stmt
| open_stmt
matched_stmt — if expr then matched_stmt else matched_stmt
| other
open_stmt — if expr then stmt
| if expr then matched_stmt else open_stmt

Figure 4.10: Unambiguous grammar for if-then-else statements

Example

//Stmi\
f expr then stmi
Ly
if erpr then stmi else stmt
.Eg Sl Sg
//gtmf\\\\
if expr then stmit else stmt
/ \
eTprT then efmf
E> S1

Figure 4.9: Two parse trees for an ambiguous sentence

CGP: Left Recursion

Definition

A grammar G is recursive if it contains a nonterminal X such that
X =T aXpB.

G is left-recursive if X =1 X5.

G is immediately left-recursive if X = Xz.

Top-down parsing cannot handle left-recursive grammars.

We need to eliminate left recursion.

Eliminating Left Recursion
Consider a grammar G with a production
A— Aa | B,

where 5 does not start with A.
Transform G in G’ by replacing it by

A — BA
A — aA e

G and G’ are equivalent: L(G) = L(G').

A A
P P
A a b A’
VAN a/ \A,
A a SN
input baa | leftmost derivation a | leftmost derivation
ﬂ = b b original grammar G g revised grammar G’
a=a

The Grammar Expression Example

The non-left-recursive expression grammar

TE'
+TE | e
FT'
*FT' | e
(E)|id

\'
L Ll Ll

is obtained by eliminating immediate left recursion from the
expression grammar

E - E+T|T
T — TxF|F
F — (E)|id

by applying the above transformation.

Algorithm for Eliminating Left Recursion

Input: A grammar G with no cycles and no e-productions.
Output: An equivalent grammar with no left recursion..

1) arrange the nonterminals in some order Ay, A,, ..., A,.
2) for (eachifrom 1ton) {

3) for (each j from 1 toi—1)

)

1 replace each production of the form A4; — A;~ by the
productions A; = 01y | doy | -+ | d&y. where
Aj =01 |8y | -+ | 0 are all current Aj-productions
5) }
6) eliminate the immediate left recursion among the A;-productions
7}

Figure 4.11: Algorithm to eliminate left recursion from a grammar

Applying the Algorithm

for i =1 to n do
o for j=1toi—1do
> replace A; — Ajy
with A; — 51y | -+ | dpy
where A; — 0, | - - - | 0, are all the current Aj-productions.
« Eliminate immediate left-recursion for A;
> New nonterminals generated above are numbered A, 4,

Original Grammar:
e (1) S— Aa|b
e (2) A= Ac|Sd|e
Ordering of nonterminals: S = A; and A = A,.
=1
« do nothing as there is no immediate left-recursion for S
=2
o replace A — Sd by A — Aad | bd
o hence (2) becomes A — Ac| Aad | bd | e
» after removing immediate left-recursion:
> A — bdA' | eA’
> A" = cA' | adA’ | €

Resulting grammar:
> S — Aa|b
> A — bdA' | eA’
> A" — cA' | adA’ | e

CGP: Left Factor

The left factor problem occurs when for some nonterminal A there
are A- productions whose bodies have a common prefix.
Example

stmt — if expr then stmt else stmt
| if expr then stmt

On input if, we have no way to decide which production to choose.

Idea: Expand with the full common factor!

Eliminating Left Factors

The algorithm below produces on input G an equivalent
left-factored G’.

Input: context free grammar G

Output: equivalent | left-factored context-free grammar G’

for each nonterminal A do
¢ find the longest non-¢ prefix a that is common to right-hand sides of
two or more productions;

« replace
>A—af|-cafa]yl | m
with
P A= aA [l | Tm
A =B B

« repeat the above step until the grammar has no two productions with
a common prefix;

Top-down Parsing
Constructing a parse tree for the input string starting from the
root in a depth-first manner (leftmost derivation).

procedure wisit(node N) {
for (cach child C of N. from left to right) {
visit (C');
i

evaluate semantic rules at node N

Figure 2.11: A depth-first traversal of a tree

Example

Given the grammar

E — TF
E - +TE|e
T — FT
T = +FT'|e
F — (E)|id

the sequence of trees given in the next slide corresponds to a
leftmost derivation of the input string id + id * id.

Example (ctdn.)

E = I
[N
T
. E = E = E
o SON tm VRN tm SN
T I /) 1 E
1NN SN SN
T roE 1 T 4+ T ;
I N TN 1 SN
id e T id e k id e T
\ I
id id = F 1
= = E = L
Im T/ \L” Im -1'/ \L" lm / \L”
AT/ /1SR /T SN~
T T T+ T T+ T E
2N RN i /N
id e I id e 1" id e
1IN [/1IN /N
id = fl 1 id = [1 id =
id id e id e

Figure 4.12: Top-down parse for id + id = id

Recursive-descent Parsing

A recursive-descent parsing program is a set of procedures, one for
each nonterminal, of the form:

void A() {
1) Choose an A-production, A — X; Xy -+ Xy
2) for (i=1tok){
3) if (X; is a nonterminal)
1) call procedure X;();
5) else if (X; equals the current input symbol a)
6) advance the input to the next symbol;
7) else /* an error has occurred */;

Figure 4.13: A typical procedure for a nonterminal in a top-down parser

Backtracking
Top-down parsing may require repeated scans over the input: if an
A-production leads to a failure, we must backtrack and try with
another one.
Example

S — CcAd
A — abla

On input w = cad we apply recursive-descent parsing. Since the
choice of the first production leads to failure, we backtrack and try
the second.

SN N I
N\

(a) (b) (c)

Predictive Parsing

The previous approach may be very inefficient due to backtracking.
A predictive parser is a recursive-descent parser needing no
backtracking.

A predictive parser can choose one of the available productions for
a nonterminal A by looking at the next input symbol(s).

The class of LL(1) grammars [Lewis&Stearns 1968] can be parsed
by a predictive parsers in O(n) time.

We first need to introduce two important functions:

FIRST and FOLLOW.

Figure 4.15: Terminal ¢ is in FIRST(A) and «a is in FOLLOW(A)

FIRST

Definition
Let G be a grammar and let « be a stringon T U N.

FIRST(«) is the set of terminal symbols that may occur at the
beginning of a string derived from «:

a€ T, ac FirsT(«) if and only if « =* af for some
Be(TUN)

If &« =* ¢, then € € FIRST().

FOLLOW

Definition
Let G be a grammar and let A be a non-terminal of G.

FoLLow(A) is the set of terminal symbols that may occur on the
right hand side immediately after A in a sentential form:

ae T, ac FoLrLow(A) if and only if S =* aAap for some
a,f € (TUN) .

If S =* aA, then $ € FoLLOW(A).

Computing FIRST
To compute FIRST(X) for any symbol X, apply the rules:

1. If X is a terminal, then FIRST(X) = {X}.

2. if X = € is a production then place € in FIRST(X)

3. If Xis a nonterminal and X — Y Y2 ... Yk is a production for some k = 1,
then place a in FIRST(X) if for some i, a is in FIRST(Yj), and ¢ is in all of
FIRST(Y), ... ,FIRST(Y:1); thatis, Y| ...Yi1 =* €. If e is in FIRST(Y)) for all j =

1,2, ... ,k, then add ¢ to FIRST(X).

Computing FIRST (ctd.)

To compute FIRST(«) for any string of symbol «, apply the rules:

Let a = X1 X5--- X,,. Perform the following steps in sequence:
o FIRST(a)< FIRST(X,) — {e};
o if € € FIRST(X)), then
> put FIRST(X,) — {e} into FIRST(x);
o if e € FIRST(X,) NFIRST(X,), then
> put FIRST(X3) — {e} into FIRST(«);

o if e € N''FIRST(X;), then

> put FIRST(X,,) — {e} into FIRST(«a);
o if e € N |FIRST(Xj;), then
> put {e} into FIRST ().

Computing FIRST: Example

Example for computing FIRST(«)

Grammar
E - ET

E — —TE | ¢
T — FT'
T = JFT' | €

F —int | (E)

FIRST(F) = {int, (}
FIRST(T') = {/, ¢}
FIRST(T) = {int, (}
FIRST(E') = {—, ¢}
FIRST(E) = {—, int, (}

« FIRST(T'E") =

> (FIRST(T') — {e})U
b (FIRST(E') — {c})U

> {e}

FIRST(E'T) = {—, int, (}
FIRST(-TE') = {—}
FIRST(c) = {c}
FIRST(FT') = {int, (}
FIRST(/FT') = {/}
FIRST(e) = {e}
FIRST(int) = {int}
FIRST((E)) = {(}

Computing FOLLOW

To compute FoLLow(X) for all nonterminals X, apply the
following rules until nothing can be added to any FOLLOW set.

1. Place $ in FOLLOW(S), (S start symbol, $ the input right endmarker).

2. If there is a production A = o B or a production A = o BB where
FIRST(B) contains € then everything in FOLLOW(A) is in FOLLOW(B).

3. If there is a production A = o B then everything in in FIRST(f)
except € is in FOLLOW(B).

FIRST and FOLLOW Example

E—>TE' 1. If X is a terminal, then FIRST(X) = {X}.
E'-> + TE' | ¢
TS FT 2. If X is a nonterminal and X = Y Yz ... Yk is a production for
T'> * F T | e some k > 1, then place a in FIRST(X) if for some i, a is in
F E id FIRST(Yi), and € is in all of FIRST(Y), ... ,FIRST(Yi4); that is,
- (E) |4d Yi..Yi1= €. If € is in FIRST(Y;) for all = 1,2, ... k, then add to

FIRST(X).

Computing FOLLOW(A)
« Place $ into FOLLOW(S)

« Repeat until nothing changes:
—~ if A — aBp then add FIRST(B)\{e} to FOLLOW(B)
if A — aB then add FOLLOW(A) to FOLLOW(B)
— if A— aBp and ¢ is in FIRST(B) then add FOLLOW(A]

to FOLLOW(B)
* FIRST(F) = FIRST(T) = FIRST(E) = {(, id }
* FIRST(E') = {+, ¢}
« FIRST(T') = {*, }
+ FOLLOW(E) = FOLLOW(E") = {), $}
+ FOLLOW(T) = FOLLOW(T') = {+,),$}
* FOLLOW(F) = {+, *,), $}

Another FIRST and FOLLOW Example

Consider the grammar:

Computing FIRST(X) and FoLLow(X) for all X in the grammar

E
E/
T

T/

A

LL Ll

gives the following result:

TE'
e|+E|—E
AT'
€| *T
alb|(E)

FirsT() ForLow()

a7b7(

6a+7_

a7b7(
€, *

a7b7(

$,)

)
)
)

) 9

& A A ¢

)
)
)
)

+++

by)

How Predictive Parsers Work

Consider a predictive parser implemented as a non-recursive
procedure that explicitly operates on a stack.
INIT: parser pushes the start symbol on the stack and call the
scanner to get the first token.
LOOP:
e if TOP is X € N, then
» Choose a production X — 3 (looking at the current token)
» Pop X and push 8 (from right to left).
» Goto LOOP.
@ If TOP is a € T and a matches the current token
» Pop a and ask scanner for the next token
» Goto LOOP.
e If STACK is empty and there are no more tokens, ACCEPT!

@ If none of the above hold, FAIL!

Why computing FIRST?

Suppose that during parsing
@ TOP is a non-terminal X and

X —=ag,....X = a

are all productions in the string grammar.
@ The current lookahead token is a
@ a € FIrsT(«;) for more than one i.

Then the parser cannot choose deterministically and may need to
backtrack.

Why computing FOLLOW?

Suppose that during parsing
@ TOP is a non-terminal X and

X =ag,...,.X = a

are all productions in the string grammar.
@ The current lookahead token is a.
e a ¢ F1rsT(qy) for all i's.
Then the parser can still select a production to expand X:
If aj =* ¢, for some i, and a € FoLLOW(X), the production
X — «; is a suitable one.
Note that a; =* ¢ iff ¢ € FIRST(cv;).

LL(1) Grammars

Left to right parsers producing a Leftmost derivation looking
ahead by at most 1 input symbol.

Definition
A grammar G is LL(1) if and only if whenever A — a | 3 are two
distinct productions in G, then
e FIRST(«) and FIRST(p) are disjoint sets
e If ¢ is in FIRST(5) then FIRST(«) and FOLLOW(A) are
disjoint sets
o If ¢ is in FIRST(a) then FIRST(5) and FOLLOW(A) are
disjoint sets.

Most programming language constructs are LL(1) but careful

grammar writing is required.
If a grammar is LL(1) then it does not have CGP, but the
vice-versa does not hold.

(Non) Example

Is the following grammar LL(1)?

G — aAb| aBbb

A — aAb|0
B — aBbb|1
No: it is not factored.
G — aG’
G' — Ab|Bbb
A — aAb|0
B — aBbb|1

This factored version is still not LL(1). Why?

LL (Predictive) Parsing Table

A Predictive Parsing Table is a bidimensional matrix M where

@ Rows represent non-terminals
@ Columns represent terminals (including $), and

e MI[A, a] contains the productions chosen for expanding A with
a as the current input.

Predictive Parsing Table

To construct a parsing table M for a grammar G, for each
production A — « in G:

e If aisin FIRST(«), add A — « in M[A, a].

o If ¢isin FIRST(«), add A — a in M[A, b] for each b in
FOLLOW(A).

o If eisin FIRST(«) and $ is in FOLLOW(A), add A — « in
MI[A,$].
An empty entry in M corresponds to an error.
Definition
A grammar is LL(1) if and only if every entry of the parsing table
contains at most una production.

Example |

For the expression grammar the algorithm produces the following
table.

NON INPUT SYMBOL
FERMINAL id i * (g
E E—=TE E—=TE
B E — +TE E —Se|ll —e
T T P T —
1 R I G o T Se|T =
I F—id F = (E)

Figure 4.17: Parsing table M for Example 4.32

Example Il

S — JEtSS'|a
S — eS|e

E — b
NON - INPUT SYMBOL
TERMINAL u b B ; g
S S—a S = iEtSS'
g S'— e S'—e
S —eS
E E—b

Figure 4.18: Parsing table M for Example 4.33

Table-driven Predictive Parser

Predictive
Stack | X Parsing Output

Program

Stack= B :

s s |
I=[w]s]
k=1;
X = top();

while(X <> $){ //stack non empty
if (X == I[k]) {pop(); k++;}
else if (X is a terminal)
error();
else if (M[X,I[k]] == error)
error();
else if (M[X,I[k]] == XoYi...Yq){
output_production(X-Y¥i...¥n);
pop();
push(¥n);...;push(¥1);
}
X=top();

Example

MATCHED STACK INPUT

ACTION

id

id

id

id +
id +
id +
id + 1d
id +id

id + id =
id +id =

id + id #
id + 1d *
id + id =

£s id+id «
TE'S id+id=
FT'E'S id +id «
idI'E'S id+id =+

id$
1d$
id$
1d$

T'E'S + id # 1d$

E'S + id * id$%

+ TE'S + id * id$

TE'S id * id$

FI'E'S id + 1d$
idTI'E'S id * id$
T'E'S +1d$

x FI'E'S +1d$
FT'E'S id$

id T'E'S id$

id T'E'$ $
id E'S $
id] $

output ff — I'E’
output 7" — £717
output £ — id
match id

output 7" — ¢
output ' — + T'E'
match +

output 1" — F1"
output £ — id
match id

output 1" — = FI”
match

output £ — id
match id

output 7" — ¢
output £ — ¢

Figure 4.21:

Moves made by a predictive parser on input id + id *

id

More Examples

FirsT() ForLrLow()

S — aAB S|a $
A - C|D Alc.de b
B — b B|b $
C — cle Clce b
D — d D|d b
a b c d $ |

S

A A-C A—-C A—-D
B B—b

C C—e C—c

D

D—d

OuTPUT PiLa INPUT OuTpuT Pira INpPUT
Start S$ adb$ Start S$ abb$
S — aAB aAB$ adb$ S — aAB aAB$ abb$
AB$ db$ AB$ bb$

A—D DB$ db$ A= C CB$ bb$
D —d dB$ db$ C—e B$ bb$
B$ b$ B—b b$ bb$

B—b b$ b$ $ b$

$ $ Errore!
OK!

	Basic Concepts
	Top-down

