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Motor control is decision-making
Daniel M Wolpert1 and Michael S Landy2

Motor behavior may be viewed as a problem of maximizing the

utility of movement outcome in the face of sensory, motor and

task uncertainty. Viewed in this way, and allowing for the

availability of prior knowledge in the form of a probability

distribution over possible states of the world, the choice of a

movement plan and strategy for motor control becomes an

application of statistical decision theory. This point of view has

proven successful in recent years in accounting for movement

under risk, inferring the loss function used in motor tasks, and

explaining motor behavior in a wide variety of circumstances.
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Introduction
While adjusting your chair at a dinner party, you bump
the table. Out of the corner of your eye, you see what
appears to be a wine glass tipping over. What should you
do? In recent years, it has been recognized that such
questions can be answered by considering the planning
and control of movements within the framework of
decision-making under risk. In typical decision-making
tasks, the subject (e.g. human, primate, rat or pigeon) is
given two or more options from which to choose. The
optimal choice (Figure 1) depends on prior knowledge
(e.g. of the probability of various outcomes), uncertain
sensory information (e.g. of the values of the options),
uncertainty of the outcome after selection of an option
(i.e. the consequences may be stochastic), and the costs/
benefits of any outcomes that may occur. In a purely
sensory decision task, these elements are codified as the
prior distribution (prior knowledge of the probability P(S)
of various states of the world S), the likelihood function (the
probability P(DjS) of obtaining the sensory data D that
you have given a particular state of the world) and a loss

function (L(C,S), determining the loss to the decision-
maker of choice C in world state S).

For the tipping wine glass, all of these elements are
present, so that the choice of a movement plan (where
to move, what grasp to adopt, how to control the ongoing
movement) constitutes a decision under risk. You have
prior information about where the wine glass is located,
how full it is, and how tipping wine glasses behave (which
specifies the time constraint under which you are operat-
ing). The peripherally viewed wine glass presents you
with noisy information about its current location and how
fast it is tipping over. There is additional uncertainty due
to the variability in motor responses, which will be
exaggerated due to the need for a rapid reach. There
are potential costs (e.g. failing in the reach and splashing
the wine on your dinner partner’s clothes) and benefits
(e.g. managing to catch the glass in time, and be able to
drink the wine that didn’t spill).

Here, we will review recent research that considers move-
ment planning and control from the standpoint of optimal
decision-making under risk. We will review the elements
that act together in motor decision-making. These in-
clude the role of loss functions, how the sensorimotor
system responds to motor errors, the role of optimal
control, the effect of sensory uncertainty, and ways in
which motor decisions are suboptimal in ways analogous
to suboptimality in cognitive decision tasks. For other
recent reviews of motor behavior as decision-making, see
[1–5].

Loss functions and optimality
The choice of a movement plan should depend on the
consequences of the movement. A loss function specifies
the cost associated with the outcome of an action and is
central to many theories of sensorimotor control. Several
studies have shown that when participants perform move-
ments with an explicit loss function they can be close to
optimal in maximizing their reward. For example, in one
study subjects were required to perform a rapid reach at a
display consisting of a green target circle and a partially
overlapping red penalty circle [6!!] (Figure 2a). Subjects
were told that points were awarded if a reach landed
within the target and deducted if a reach landed within
the penalty region, and within any set were told how
many points were associated with the target and penalty.
Given motor variability for these speeded reaches, any
choice of intended endpoint can result in a penalty and/or
missed target. Given the measured covariance of move-
ment endpoints for speeded reaches to a single target, it is
simple to determine the probabilities of each outcome
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The optimal choice depends on the prior, likelihood and loss function. In this schematic we consider pointing to the location of a target in one
dimension. The top row shows two different possible priors (red curves) for target locations that might be imposed by task conditions, a mixture of two
Gaussians (left) or a uniform prior over limited range (right). When the target is seen, the noisy sensory data specify a likelihood (blue curves). In this
case the visual location of the target has been corrupted by Gaussian noise. The posterior probability (green curves) is the point-wise product of the
prior and the likelihood (renormalized so that the area under the curve is one). The final decision depends on the loss function. Two possible loss
functions are shown, one in which the loss increases quadratically (black curve) and the other in which it increases linearly (magenta) with error. The
optimal estimate, shown by the arrows and lines on the posterior, depends on all three components.

Figure 2
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(a) In a rapid reaching task, subjects are awarded points (as indicated) for landing in the green target and penalties for landing in the red penalty region.
(b) A typical gain landscape reflecting the expected gain as a function of aimpoint. The expected gain takes into account subjects’ motor variability.
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(hitting the target, penalty, both or neither) for any choice
of aimpoint, and hence the expected gain (negative of the
expected loss) in terms of average points per trial
(Figure 2b). The results were surprising: Participants
chose aim points that maximized expected gain. That is,
within measurement error, humans were optimal at the
task of reaching under risk.

Unlike the simple reaches under risk in which the cost of
a movement depends only on the final state, costs can
often accrue over the entire movement. This is particu-
larly true of path planning, in which the cost of a path over
a landscape depends on the route taken. When planning
such a path under risk, humans are not always able to
maximize gain. For example, when subjects were
required to reach to a goal by moving across a two-
dimensional surface in which different regions had differ-
ent costs per cm travelled, subjects’ behavior was sub-
optimal [7]. The choice of route resulted in 30% lower
gain, on average, than the optimal path. However, beha-
vior has been shown to be qualitatively similar to optimal
behavior for more naturalistic loss functions. For example,
the approach angle for a precision grasp tends to align
with the maximal uncertainty of the position of the object
to be grasped, thus minimizing the probability of unstable
grasp [8]. Also, grip aperture widens when sensory uncer-
tainty is increased by viewing the object to be grasped in
peripheral vision [9]. Similarly, when reaching around an
obstacle there is a trade-off between the cost of a circui-
tous path and the risk of bumping into the obstacle, so
that clearance (minimum distance to the object) increases
when sensory information is poor or motor uncertainty is
increased [10].

The cost of time
In planning a movement such as a reach, the movement
plan can encode where the reach will land on average (the
aimpoint) and the expected duration. This specification of
duration is an important component of such motor de-
cisions because of the speed-accuracy tradeoff: movements
that allow more time are spatially more accurate. Humans
can optimize the duration of a movement; when an explicit
loss function is imposed on movement duration (analogous
to Figure 2 in time), such that one range of durations
receives a reward and another range a penalty, mean
movement durations are optimal in the sense of maximiz-
ing expected gain [11]. Similarly, subjects appear to opti-
mize when they choose to initiate a movement, taking their
speed-accuracy tradeoff (faster movements are less accu-
rate) into account. In two studies [12!!,13], participants had
a fixed total amount of time to make a reaching movement
and they could choose how to split this time between an
initial pre-movement viewing time and the remaining time
to carry out the movement. This situation leads to a trade-
off with earlier movement initiation leading to increased
sensory uncertainty but smaller motor variability, and the
converse for later movement initiation. In both studies,

human performance was optimal in the sense that subjects
chose the initiation time that maximized the probability of
hitting the target. Humans also trade off the amount of time
fixating the object of a reach and the goal where that object
will next be placed based on the acuity requirements of
each subtask [14].

Many everyday tasks require a planned sequence of
movements (such as reaching and grasping a wine glass
and subsequently bringing it to one’s mouth). Surpris-
ingly, motor decisions concerning planned sequences of
movements under risk turn out to be suboptimal. When
subjects have a fixed time within which to try to sequen-
tially hit two targets, each associated with a different
reward, there is a tradeoff in the time allocated to each
movement, and performance is suboptimal [15]. Subjects
spend too much time on the first reach even when hits on
the second target are far more valuable than on the first.
Such suboptimal behavior is resistant to training, and
moreover, having an imposed time constraint itself comes
at a cost of movement accuracy [16!]. That is, there is no
single speed-accuracy-tradeoff function; a fast reach is
more accurate when carried out without a time constraint
than when it is chosen to satisfy a time constraint.

Time can be costly for reasons independent of the motor
system. For example, when using a sequence of eye move-
ments to search for a target in a complex visual display,
working memory is used to remember previously viewed
locations. However, the quality of this memory decays over
time. A recent study demonstrated a tradeoff between
memory and motor effort in a cognitively difficult visual
search task [17]. Participants were required to find a set of
targets that shared the same attribute but on some trials the
targets only became visible after a motor act such as a fixed
delay after saccade or on a mouse click. When the motor
task had low effort, subjects reduced the cost of working
memory by increasing exploration so as to revisit previously
fixated targets whereas when motor costs were high they
relied more on memory to reduce motor costs.

In general, the value of a reward also depends on how long
you expect to wait for the reward. In cognitive decision-
making tasks, this discount function specifies how the
value of future rewards decay with delays, ranging from
minutes to weeks, in receiving the reward. Recently, it
has been proposed that the motor system also uses such a
temporal discounting of reward but with a discounting
time period that is a fraction of a second. That is, the
duration of a saccade can be thought of as delaying the
reward of placing one’s gaze on target. Such a model can
explain several aspects of saccade dynamics such as faster
saccades to more rewarding targets [18!].

Estimating the loss function
In several of the studies discussed thus far, the loss
function for the task, specified by the reward for hitting
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a target, was imposed by the experimenter. What loss
function is used by subjects when the loss function is not
specified? How are errors scored in determining accuracy,
and how does accuracy trade off with other costs, such as
effort?

If we consider the choice between making two movements
both missing a target by 2 cm or the first by 1 cm and the
second by 3 cm, a loss function specifies which choice is
better. For example, if the loss function is quadratic in
error, then the first choice is more desirable (loss 8 vs. 10).
However, if the loss is linear in absolute error, then both are
equally good (4 vs. 4). And, if the loss function is pro-
portional to the square root of error, then the second choice
is better (2.83 vs. 2.73). Therefore, the loss function for
accuracy may be estimated by asking subjects to choose
between different distributions of errors. The results of
such a motor-decision task showed that for small errors the
loss function was proportional to squared error, but rose less
steeply for larger errors [19]. Such a loss is robust to outliers
in comparison with a quadratic loss function. Similarly, to
estimate the loss function that trades off effort and varia-
bility, subjects were asked to produce a target amount of
total force using two fingers [20]. This is another ‘motor
decision’ as to what combination of forces to use to accord
with the constraint of total force production. Increasing the
force produced by a finger incurs a cost both because of the
increased effort and the resulting increased variability
(motor variability increases with the strength of the motor
command). However, by varying the target force and the
combination of fingers used, it is possible to disentangle the
two potential contributions to the loss function. The results
demonstrated that both effort and variability contribute to
the choice of how to distribute force across the pair of
fingers, with much higher weight given to reducing overall
effort.

Interpretation of and response to error
A key aspect of decision-making in sensorimotor control
is how to interpret and respond to errors. This is a huge
area of research. Here, we highlight a few recent studies
that emphasize error-interpretation as a decision-making
problem. In particular, given an error, how should I assign
the credit for that error across different body segments or
back in time to different actions? The results of these
studies can been formalized in a Bayesian model in which
the relative allocation of credit to internal or external
sources [21] or, during a bimanual task, to the left or right
arm [22!], can be assigned based on both a prior shaped by
previous experience as well as on the source that is most
consistent with the error. In addition, the way errors of
different magnitudes lead to change in the motor com-
mand can also be understood as being optimal in a
Bayesian framework in which small errors are interpreted
as probably arising from natural variability, requiring no
adaptive response, but large errors may indicate a mis-
calibration that needs to be remedied [23].

Not only must errors be interpreted, they can also be
controlled by selecting our actions. In a series of studies, it
has been shown that subjects may adopt different strat-
egies to reduce errors. For example when throwing an
object, not only is it important to select the correct
average hand position and velocity for the release but
improvements in performance can be achieved by con-
trolling the covariance between components of their
action, for example releasing early if the velocity is high
and late if it is low [24].

Optimal feedback control
While most of the studies described so far deal with
discrete actions, most tasks involve continuous generation
of complex trajectories. The concept of maximizing
expected gain generalizes easily to the framework of
optimal control in which a loss function is specified over
the entirety of the movement so that the controller itself
is organized so as to minimize loss. Typical costs penalize
a mixture of effort and inaccuracy. The form of the
optimal solution to minimizing this cost in the face of
uncertainty arising from sensory and motor variability is to
learn a feedback rule that generates the motor command
as a function of the best estimate of the current state of
the motor system, thereby setting up an optimal feedback
controller. The beauty of this approach is that the feed-
back rules now specify the entire control strategy and how
the trajectory will unravel and compensate for internal
noise and external perturbations. The feedback rules rely
on estimating the state, which is not a trivial task. Sensory
noise and time delays require an estimation process that
optimally combines sensory information with predictive
information based on the outgoing motor command to
estimate the state (an example of such an estimator is the
Kalman filter). The framework of optimal feedback con-
trol has seen development both in the underlying theory
[25] as well as experimental validation. For example, the
theory is able to account for detailed aspects of trajectory
generation and the response to perturbations [26] as well
as how co-variation of effectors is tuned so as to push
variability into task-irrelevant dimensions while preser-
ving accuracy in task-relevant dimensions [27]. The
framework has also been successfully applied to complex
full-body movement such as balancing on a snowboard
[28].

Bayesian approaches to uncertainty
As we pointed out in the Introduction, an optimal Bayesian
approach to movement planning and control combines
prior knowledge of the probability of various states of the
world and uncertainty both in sensory data and in the
outcome of the movement plan itself. Several recent
studies examine how these elements combine to affect
the choice of movement plan.

In one study, subjects were asked to point at a target with
the unseen hand in a virtual display and, at reach
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initiation, the display of hand position was extinguished
[29]. The finger position was displayed briefly at the
halfway point in the reach with varied sensory uncertainty
(using a noisy visual display) and displaced laterally from
true finger position by a random amount (a prior distri-
bution of displacement that had a mean of 1 cm and
standard deviation of 0.5 cm). Landing points were con-
sistent with a model in which subjects combine the
sensory likelihood about the amount of finger displace-
ment with a prior distribution in a Bayesian fashion.
However, another study showed in a similar experiment
that when the sensory likelihoods are measured, although
the results were qualitatively consistent with a Bayesian
model (i.e. estimates regressed more to the mean of the
prior with increasing sensory uncertainty), they were
quantitatively suboptimal, inconsistent with optimal
Bayesian movement planning that maximized expected
gain given prior information and uncertain sensory signals
[30].

Suboptimal behavior may result from a Bayesian com-
putation in which the subject uses a different prior
distribution than exists naturally in the environment or
than imposed by the experimenter. Thus, it is import-
ant to develop methods to estimate the prior distri-
bution adopted by the subjects. In sensory research,
techniques have been developed to estimate sensory
priors by analyzing perceptual bias [31]. An analogous
technique has been developed for estimating the
covariance of a prior on sensory-motor transformations
across the class of linear transformations (scaling,
rotation, shear and reflection [32]). Humans also behave
as if they also have a prior expectation of the con-
sequences of movement. For example, in one study
[33!!] subjects performed a speeded reach at a payoff-
penalty display (as in Figure 2). At reach initiation, the
target-penalty display was replaced with a large pattern,
and mid-way through the reach the pattern randomly
began to drift slowly leftward, rightward, or remained
stationary. The drift affected reach trajectories, nud-
ging the reach laterally in the direction of visual drift,
through a visuomotor reflex known as the manual
following response (MFR). Since there was insufficient
time to compensate for the MFR, this setup effectively
increased movement uncertainty, making it anisotropic
(in particular, the covariance was elongated horizon-
tally). Performance was suboptimal (in contrast to the
study [6!!] reviewed in Loss functions and optimality), but
was effectively optimal for an ideal performance model
that assumed that motor noise was isotropic. In effect,
subjects behaved as if they had overwhelmingly strong
prior knowledge that movement uncertainty of end-
points in this speeded reaching task would be isotropic.
Thus, viewing movement planning and control as a
decision-making task enables the researcher to uncover
assumptions made by the participant in carrying out
the task.

Risk sensitivity: Prospect Theory in motor
control
In sensorimotor control subjects appear to maximize
expected gain and this principle has been used to explain
behavior in tasks in which uncertainty arises from varia-
bility of the perceptual or motor system. This contrasts
with a large number of studies in economic decision-
making where deviations from such optimality have been
observed. For example, when offered a choice of a lottery
that involves either a 50:50 gamble of winning $0 or $100
or a sure bet of $45, most people choose the sure bet even
though it has a mean reward lower than the gamble.
Prospect Theory [34] suggests that such deviations from
what might appear optimal can be due to a nonlinear
relation between reward (such as dollars) and the sub-
jective value of that reward, and between the probability
of an outcome and the subjective weight applied to that
outcome. The shape of these relations determines how
subjects will choose which of two lotteries they would
prefer to play. Moreover, the value relation can be highly
asymmetric in terms of gains and losses (typically people
are loss averse). Simple shapes of the relation can also be
interpreted as sensitivity not only to the mean reward (or
cost) but also to the variance of the reward—that is, risk
sensitivity. Subjects may be willing to accept a lower
mean reward if it either reduces their variance (risk
aversion, as in the previous lottery example) or increases
their variance (e.g. the typical risk-seeking behavior seen
in lotteries involving losses). Several recent studies using
sensorimotor tasks find that participants do not maximize
expected reward and are consistent with sensitivity to risk
as well as expected reward. In the reaching-under-risk
task (Figure 2a), the uncertainty in the outcome of the
movement arises from intrinsic variability in the actions
[35]. When comparing standard economic choices such as
a choice of lotteries with the equivalent motor task,
subjects behave in a more risk-seeking manner in the
motor task [36]. This result can be interpreted within the
framework of Prospect Theory. In lottery choice tasks,
participants overweight small probabilities (expecting
rare events to be more probable than they are) and
underweight large ones (expecting highly probable
events to be less probable than they are); the opposite
pattern is seen in the equivalent motor choice task.

Evidence of decision-making in motor
behavior
While the field of decision-making has tended to focus on
the mechanisms underlying simple perceptual decisions,
studies in this field have focused less on the interaction of
the motor system with the evolving decision-making
process. Similarly, in the work we have reviewed so far,
we have shown how movement planning and control can
be viewed as a decision-making problem. However, there
are clear examples of behavior in which the motor system
can betray the internal decision-making process for a
purely perceptual decision (for a review see [37]).
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Recently, studies have started to link the dominant
theory of decision-making—the drift-diffusion model—
with the motor system. In the drift-diffusion model, when
making a decision between two alternatives, evidence is
accumulated in favor of one alternative over the other.
Evidence is modeled as draw from a Gaussian distribution
with a mean that depends on the stimulus. A bound is
associated with each choice (a negative and a positive
bound) and when the accumulated evidence crosses a
bound the associated choice is made. This model can
explain both the probability of making a correct choice
and the time to choice as a function of task difficulty.
However, whenever we make a perceptual decision that
leads to an action, because of time delays in perception
and the enacting of that decision, there is further evi-
dence in the processing pipeline (around 250 ms) that
cannot be used to make the decision but that could still be
processed. A recent study showed that indeed this infor-
mation is processed and, having hit one of the bounds for
the initial decision, a new change-of-mind bound is
created. If this bound is subsequently crossed then the
decision is reversed, leading to a change of mind and an
appropriately altered movement trajectory [38!!]. More-
over, even before the movement is initiated the medium

and long-latency reflex gains in the motor system (as
measured by the stretch reflex) track the evolving
decision process with an almost linear relation between
reflex gain and the accumulated evidence [39], suggesting
there can be a continuous flow of information from the
decision to the motor system. Indeed, MEG studies show
that signals in motor cortex build up gradually in decision-
making tasks [40].

Conclusion and outlook
Viewing movement planning and control as a problem of
statistical decision theory has proven a useful viewpoint
for understanding motor behavior. In this view, visuo-
motor planning, control and adaptation proceed in three
stages (Figure 3). First, prior knowledge and noisy sen-
sory signals are combined to produce a posterior distri-
bution. In the second stage, for both sensory decisions and
motor tasks, the posterior is combined with knowledge of
the loss function as well as any downstream uncertainty
(in the motor output, environment, or expected reward) to
produce a sensory estimate or decision or a movement
plan. In the third and final stage, residual error is inter-
preted, for example, to adapt the motor system for sub-
sequent movements. We predict that substantial progress
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Three stages of sensory and motor decisions: Bayesian inference, decision-making and credit assignment. We cross-reference the primary focus of
the articles we have surveyed to the elements of sensory/motor decision processes.
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in modeling movement will result as researchers get a
better handle on the loss functions and models of sensory
and motor uncertainty adopted in natural movement
tasks.
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